什么叫真空镀膜

什么叫真空镀膜,第1张

真空镀膜就是置待镀材料和被镀基板于真空室内,采用一定方法加热待镀材料,使之蒸发或升华,并飞行溅射到被镀基板表面凝聚成膜的工艺。

一、镀膜的方法及分类

在真空条件下成膜有很多优点:可减少蒸发材料的原子、分子在飞向基板过程中于分子的碰撞,减少气体中的活性分子和蒸发源材料间的化学反应(如氧化等),以及减少成膜过程中气体分子进入薄膜中成为杂质的量,从而提供膜层的致密度、纯度、沉积速率和与基板的附着力。通常真空蒸镀要求成膜室内压力等于或低于10-2Pa,对于蒸发源与基板距离较远和薄膜质量要求很高的场合,则要求压力更低。

主要分为一下几类:

蒸发镀膜、溅射镀膜和离子镀。

蒸发镀膜:通过加热蒸发某种物质使其沉积在固体表面,称为蒸发镀膜。这种方法最早由M.法拉第于1857年提出,现代已成为常用镀膜技术之一。

蒸发物质如金属、化合物等置于坩埚内或挂在热丝上作为蒸发源,待镀工件,如金属、陶瓷、塑料等基片置于坩埚前方。待系统抽至高真空后,加热坩埚使其中的物质蒸发。蒸发物质的原子或分子以冷凝方式沉积在基片表面。薄膜厚度可由数百埃至数微米。膜厚决定于蒸发源的蒸发速率和时间(或决定于装料量),并与源和基片的距离有关。对于大面积镀膜,常采用旋转基片或多蒸发源的方式以保证膜层厚度的均匀性。从蒸发源到基片的距离应小于蒸气分子在残余气体中的平均自由程,以免蒸气分子与残气分子碰撞引起化学作用。蒸气分子平均动能约为0.1~0.2电子伏。

蒸发源有三种类型。①电阻加热源:用难熔金属如钨、钽制成舟箔或丝状,通以电流,加热在它上方的或置于坩埚中的蒸发物质。电阻加热源主要用于蒸发Cd、Pb、Ag、Al、Cu、Cr、Au、Ni等材料。②高频感应加热源:用高频感应电流加热坩埚和蒸发物质。③电子束加热源:适用于蒸发温度较高(不低于2000[618-1])的材料,即用电子束轰击材料使其蒸发。

蒸发镀膜与其他真空镀膜方法相比,具有较高的沉积速率,可镀制单质和不易热分解的化合物膜。

为沉积高纯单晶膜层,可采用分子束外延方法。生长掺杂的GaAlAs单晶层的分子束外延装置。喷射炉中装有分子束源,在超高真空下当它被加热到一定温度时,炉中元素以束状分子流射向基片。基片被加热到一定温度,沉积在基片上的分子可以徙动,按基片晶格次序生长结晶用分子束外延法可获得所需化学计量比的高纯化合物单晶膜,薄膜最慢生长速度可控制在1单层/秒。通过控制挡板,可精确地做出所需成分和结构的单晶薄膜。分子束外延法广泛用于制造各种光集成器件和各种超晶格结构薄膜。

溅射镀膜:用高能粒子轰击固体表面时能使固体表面的粒子获得能量并逸出表面,沉积在基片上。溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。通常将欲沉积的材料制成板材——靶,固定在阴极上。基片置于正对靶面的阳极上,距靶几厘米。系统抽至高真空后充入 10-1帕的气体(通常为氩气),在阴极和阳极间加几千伏电压,两极间即产生辉光放电。放电产生的正离子在电场作用下飞向阴极,与靶表面原子碰撞,受碰撞从靶面逸出的靶原子称为溅射原子,其能量在1至几十电子伏范围。溅射原子在基片表面沉积成膜。与蒸发镀膜不同,溅射镀膜不受膜材熔点的限制,可溅射W、Ta、C、Mo、WC、TiC等难熔物质。溅射化合物膜可用反应溅射法,即将反应气体 (O、N、HS、CH等)加入Ar气中,反应气体及其离子与靶原子或溅射原子发生反应生成化合物(如氧化物、氮化物等)而沉积在基片上。沉积绝缘膜可采用高频溅射法。基片装在接地的电极上,绝缘靶装在对面的电极上。高频电源一端接地,一端通过匹配网络和隔直流电容接到装有绝缘靶的电极上。接通高频电源后,高频电压不断改变极性。等离子体中的电子和正离子在电压的正半周和负半周分别打到绝缘靶上。由于电子迁移率高于正离子,绝缘靶表面带负电,在达到动态平衡时,靶处于负的偏置电位,从而使正离子对靶的溅射持续进行。采用磁控溅射可使沉积速率比非磁控溅射提高近一个数量级。

离子镀:蒸发物质的分子被电子碰撞电离后以离子沉积在固体表面,称为离子镀。这种技术是D.麦托克斯于1963年提出的。离子镀是真空蒸发与阴极溅射技术的结合。一种离子镀系统如图4[离子镀系统示意图],将基片台作为阴极,外壳作阳极,充入惰性气体(如氩)以产生辉光放电。从蒸发源蒸发的分子通过等离子区时发生电离。正离子被基片台负电压加速打到基片表面。未电离的中性原子(约占蒸发料的95%)也沉积在基片或真空室壁表面。电场对离化的蒸气分子的加速作用(离子能量约几百~几千电子伏)和氩离子对基片的溅射清洗作用,使膜层附着强度大大提高。离子镀工艺综合了蒸发(高沉积速率)与溅射(良好的膜层附着力)工艺的特点,并有很好的绕射性,可为形状复杂的工件镀膜。

二、薄膜厚度的测量

随着科技的进步和精密仪器的应用,薄膜厚度测量方法有很多,按照测量的方式分可以分为两类:直接测量和间接测量。直接测量指应用测量仪器,通过接触(或光接触)直接感应出薄膜的厚度。

常见的直接法测量有:螺旋测微法、精密轮廓扫描法(台阶法)、扫描电子显微法(SEM);

间接测量指根据一定对应的物理关系,将相关的物理量经过计算转化为薄膜的厚度,从而达到测量薄膜厚度的目的。

常见的间接法测量有:称量法、电容法、电阻法、等厚干涉法、变角干涉法、椭圆偏振法。按照测量的原理可分为三类:称量法、电学法、光学法。

常见的称量法有:天平法、石英法、原子数测定法;

常见的电学法有:电阻法、电容法、涡流法;

常见的光学方法有:等厚干涉法、变角干涉法、光吸收法、椭圆偏振法。

下面简单介绍三种:

1. 干涉显微镜法

干涉条纹间距Δ0,条纹移动Δ,台阶高为t=(Δ/Δ0 )*0.5λ,测出Δ0 和Δ,即可,其中λ为单色光波长,如用白光,λ取 530nm。

2. 称重法

如果薄膜面积A,密度ρ和质量m可以被精确测定的话,膜厚t就可以计算出来:

d=m/Aρ。

3 石英晶体振荡器法

广泛应用于薄膜淀积过程中厚度的实时测量,主要应用于淀积速度,厚度的监测,还可以反过来(与电子技术结合)控制物质蒸发或溅射的速率,从而实现对于淀积过程的自动控制。

对于薄膜制造商而言,产品的厚度均匀性是最重要的指标之一,想要有效地控制材料厚度,厚度测试设备是必不可少的,但是具体要选择哪一类测厚设备还需根据软包材的种类、厂商对厚度均匀性的要求、以及设备的测试范围等因素而定。

三、真空镀膜机保养知识:

1. 关闭泵加热系统,然后分离蒸镀室(主要清洁灰尘,于蒸镀残渣)

2. 关闭电源或程序打入维护状态

3. 清洁卷绕系统(几个滚轴,方阻探头,光密度测量器)

4. 清洁中罩室(面板四周)

5. 泵系统冷却后打开清洁(注意千万不能掉入杂物,检查泵油使用时间与量计做出更换或添加处理)

6. 检查重冷与电气柜设备

这次实习给了我们了解了镀膜技术的原理、技术,使我们了解了工厂的生产,感觉很新颖,收获很多。

ABS、PC、ABS+PC塑料底材UV真空镀膜表面出现油点、油窝问题的解决方法:

UV真空镀膜为什么要除油?

1.塑料注塑成型使用脱模剂等导致塑料表面沾有油污,是电镀不良缺陷主要的原因。在塑料表面电镀罩UV光油的表面处理工艺中,塑料注塑成型工艺中脱模剂残留在塑料表面导致电镀不良是较为常见的.

2.脱模剂能够对塑料模具成型的塑料提供快捷有效的脱模作用,而残留在塑料制品表面的脱模剂油污,会在材质表面形成分布不均匀的油花或者油点。

静川化工UV真空镀膜处理剂的应用:

白电油浸泡除油方法,安全性能成为较大的隐患,除油效果不稳定,施工工艺繁琐,造成影响电镀效果的因素增多,没有足够的市场经验和实验基础,且无法达到环保标准需求。但是静川化工UV真空镀膜处理剂则只需喷涂的电镀除油剂, *** 作工艺简单,能够配合线体进行施工,遮盖油污能力强,无卤通过RoHS检测,已通过大量的市场应用证明,除油效果稳定,效率高,无卤环保,提升良率幅度大。

继台积电之后,卷入美国政府围堵华为的谣言这几天卷到了中芯国际这边。

5月21日上午,几个知名 财经 博主在社交平台上发布了一则名为《中芯国际-泰康一对一交流纪要》,称如果严格按照美国政府出台的限制管控法令,整个华为的渠道都会被管控,中芯国际理论上将可能无法接下华为的订单。

当天午后,中芯国际快速在其官方微信公众号上发布澄清公告,称该“纪要内容”纯属网络谣言,违背事实,公司也从未与网络流传文中所述的泰康及活动主办方的相关人员进行过任何一对一的交流。

受该谣言影响,中芯国际当日股价猛跌超7%,市值蒸发超70亿港元,半导体指数跌近4%,该板块市值蒸发570亿。

上周五,美国商务部宣布,将在全球范围内阻止向华为供应芯片,所有使用美国芯片制造设备和软件技术的外国公司必须获得美国许可,才能向华为或海思半导体这样的华为关联公司提供某些种类的芯片。

根据该规则,华为此前最大的芯片供应商台积电将不能再向其供应芯片,华为将不得不将部分订单转至内地最大、制程最先进的晶圆代工厂中芯国际,中芯国际也将借此快速崛起。

另外,尽管中芯国际在澄清公告中否认了“纪要内容”的真实性,但 令市场忧心的是,作为中国本土企业的中芯国际,是否能够绕过美国对华为的围堵新规。

根据调整后的规则,中芯国际面临着与台积电一样的问题,很多半导体设备和软件都来自于美国厂商。如果美国认为中芯国际违反了许可规则,可能迫使美国应用材料、泛林半导体等远程锁死中芯国际的设备和软件,使其停摆,成为无法工作的“废铁”。

出于上述顾虑,“中芯国际无法接华为新订单”的《会议纪要》才会造成巨大的市场影响。

即使中芯国际继续向华为供货,但中芯国际是否能够接得住才是眼前最为迫切的问题。

事实上,中芯国际目前的技术仍然落后于台积电、三星等企业,2019年才实现14nmFinFET的量产,与台积电的芯片批量生产技术存在着两代的差距,而华为的高端芯片麒麟990、980这类7nm芯片目前在全球只有台积电可以代工批量生产。

如果台积电真的停止接华为新订单为其代工,那么华为也就无法使用5nm、7nm先进制程的芯片,那么华为在7nm芯片库存消耗完之后,只能使用中芯国际的14nm及中低端芯片,接下来几年的手机及基站产品的性能将很可能会出现整体上的下滑。

值得一提的是,中芯国际在芯片量产上正在加速取得技术性突破。

据该公司CEO梁孟松对外透露,中芯国际年底便可量产N+1工艺的芯片,其性能几乎等同于台积电第一代7nm工艺。

在美国商务部宣布围堵新规的当日,中芯国际披露公告,国家大基金二期加码投资中芯国际逾160亿人民币,以提升14nm及以下的先进制程开发和产能。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8891915.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-22
下一篇 2023-04-22

发表评论

登录后才能评论

评论列表(0条)

保存