近日,美国 芝加哥大学 Alexander A. High团队在Nature Photonics上发文,报道了在原子薄单层二硒化钨tungsten diselenide(WSe2)纳米光子界面中的电可控手性。二氧化钛波导直接制作在低无序氮化硼封装的WSe2表面上。在积分之后,从激子态到波导中的光致发光,可以在平衡发射和定向偏置发射之间电切换。工作原理利用了WSe2中激子态掺杂相关的谷极化。此外,纳米光子波导,可以用作扩散激子通量的近场源,其显示从界面手性继承的谷和自旋极化。这种多功能制造方法,使光子学与范德瓦尔斯异质结构的确定性集成成为可能,并可提供对其激子和电荷载流子行为的光学控制。
Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor
二维半导体的纳米光子界面中的电控手性。
图2:界面静电调谐。
图3:谷极化的栅极依赖性。
图4:谷(自旋)极化激子通量的光子泵浦。
该项研究演示了与六方氮化硼hexagonal boron nitride,hBN封装的、电门控WSe2单层连接的光子波导。界面表现出从0%到20%电可调手性-定向耦合效率chiral–directional coupling efficiency,CDCE,并通过近场激发产生谷(自旋)极化激子通量。
除了线性波导,多功能纳米光子制造方法,可以将过渡金属硫化物TMDCs与更复杂的光子结构连接,其中器件几何形状和尺寸仅,受先进光刻技术限制,使光子环调制器和干涉仪,以及光子晶体中的激子-极化激元成为可能。
结合二维材料大面积生长、剥离和组装的最新进展,这将提高异质结构产量和可扩展性,超越目前限制,这项工作,为其与纳米光子电路的确定性、晶圆级集成,建立了一个通用平台。
重要的是,该界面的可调手性(以前在其他手性光学界面中无法获得)依赖于过渡金属硫化物TMDC单层中激子态掺杂相关的谷动力学。多层和扭曲的范德瓦尔斯异质结构,展示了设计的、奇异的谷特性,也可以与这种波导界面相结合,用于额外手性功能,如栅极可逆发射路由,并提供基于二维材料的新光子逻辑和控制方案。
此外,原子薄半导体中,激子扩散的纳米光子驱动,在分布式光子元件和局部激子电路之间建立了一座桥梁。此外,通过手性过渡金属硫化物TMDC–光子界面的近场光泵浦,可用于产生单层中驻留电荷载流子的自旋极化。这种光学制备的自旋极化电子态,对载流子掺杂水平敏感,可以打破界面时间反演对称性,实现集成纳米光子结构中的栅极激活全光非互易性。
文献链接:https://www.nature.com/articles/s41566-022-00971-7
DOI: https://doi.org/10.1038/s41566-022-00971-7
本文译自Nature。
1.第一代半导体材料主要是指硅(Si)、锗元素(Ge)半导体材料。作为第一代半导体材料的锗和硅,在国际信息产业技术中的各类分立器件和应用极为普遍的集成电路、电子信息网络工程、电脑、手机、电视、航空航天、各类军事工程和迅速发展的新能源、硅光伏产业中都得到了极为广泛的应用,硅芯片在人类社会的每一个角落无不闪烁着它的光辉。
2.第二代半导体材料主要是指化合物半导体材料,如砷化镓(GaAs)、锑化铟(InSb);三元化合物半导体,如GaAsAl、GaAsP;还有一些固溶体半导体,如Ge-Si、GaAs-GaP;玻璃半导体(又称非晶态半导体),如非晶硅、玻璃态氧化物半导体;有机半导体,如酞菁、酞菁铜、聚丙烯腈等。
3.第三代半导体材料主要以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带半导体材料。在应用方面,根据第三代半导体的发展情况,其主要应用为半导体照明、电力电子器件、激光器和探测器、以及其他4个领域,每个领域产业成熟度各不相同。在前沿研究领域,宽禁带半导体还处于实验室研发阶段。
扩展资料
Si和化合物半导体是两种互补的材料,化合物的某些性能优点弥补了Si晶体的缺点,而Si晶体的生产工艺又明显的有不可取代的优势,且两者在应用领域都有一定的局限性,因此在半导体的应用上常常采用兼容手段将这二者兼容,取各自的优点,从而生产出符合更高要求的产品,如高可靠、高速度的国防军事产品。因此第一、二代是一种长期共同的状态。
但是第三代宽禁带半导体材料,可以被广泛应用在各个领域,消费电子、照明、新能源汽车、导d、卫星等,且具备众多的优良性能可突破第一、二代半导体材料的发展瓶颈,故被市场看好的同时,随着技术的发展有望全面取代第一、二代半导体材料。
参考资料百度百科——半导体材料
建设近三年,投资7亿余的芯片制造大厂——武汉弘芯,现在却传出了因资金链断裂而出现烂尾的消息。目前,武汉弘芯把全新进口的荷兰光刻机抵押给银行。
武汉弘芯半导体制造有限公司再017年11月成立,总部位于中国武汉临空港经济技术开发区。建立以来,一直被视为当地的重点半导体项目,由武汉弘芯为主导建立的武汉弘芯半导体制造产业园,也是2018年武汉单个投资最大的项目。在2020年市级重大在建项目计划中,半导体项目位居世界第一,总额投资也是世界第一。而且,武汉弘芯不仅引进了国内唯一能生产7纳米芯片的核心设备ASML高端光刻机,预计建成晶圆级先进封装生产线。也任命台积电前CTO蒋尚义为总经理兼首席执行官。
看来,这个投资重大的项目对我国半导体产业发展是至关重要的。可惜,这一切都没能如意进行下去,投资千亿的项目现在却面临资金断裂的风险,也就是陷入烂尾与停摆的状态,必然对我国芯片产业发展有重要影响。
武汉弘芯投资了近1180亿的半导体项目。但是由于疫情的影响,导致大的资金缺口出现,使企业面临资金链断裂的风险,不得不把全新进口ASML抵押给银行。要知道这一台ASML,是双级沉浸式光刻机,也是国内唯一具备生产7nm芯片的能力。即便不是最先进的,但对于我国半导体设备还处于紧缺的状态是非常宝贵的机器。要知道能从荷兰进口光刻机是很困难,英特尔、三星、台积电都未必能拿到全部产能。
根据报道,武汉弘芯原本计划是购置大约3650套设备,根据东西湖区统计局的分析报道,在2020年的新冠疫情肺炎让武汉封城长达76天,造成后续设备都无法顺利进行装机。再加上现在中美贸易战的持续升温,购买美国半导体设备的困难程度也随之增强。在专案一期生产线上仅仅存在300多台套设备,一直都是订购阶段与进厂的阶段。
武汉弘芯也未能把尾款给付清。台媒报道,之前的帆宣系统就是迟迟未收到尾款,于是只能把卖给弘芯的特种气体设备从厂区撤走。
我国在科技领域上也处在被美国全方位打压阶段,芯片又是在推进领域中被卡脖子的重要环节。
我国现在正遭美国在科技领域的全方位打压,芯片又是我国在推进领域里面被卡脖子的环节。半导体行业本就是一个高门槛,需要资金长期投入的产业。在保障资金链的前提下,地方政府应该火眼金睛,做好功课,避免钱哗哗流出去,最后换回一堆吃灰的废铜烂铁。这是一种比浪费粮食更为可耻一种行为!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)