早期的计算器为纯手动式,如算盘、算筹等。算盘通常是以滑动的珠子制成。在西方,算盘在印度阿拉伯数字流行前使用了数个世纪,且在近代中国的记帐与商务上仍广泛使用。
后来出现机械计算器。17世纪初,西方国家的计算工具有了较大的发展,英国数学家纳皮尔发明的"纳皮尔算筹",英国牧师奥却德发明了计圆柱型对数算尺。
1642年,年仅19岁的法国伟大科学家帕斯卡(Pascaline)发明了第一部机械式计算器,在他的计算器中有一些互相联锁的齿轮,一个转过十位的齿轮会使另一个齿轮转过一位。
1694年,莱布尼兹(Leibniz)在德国将其改进成可以进行乘除的计算。此后,一直要到20世纪50年代末才有电子计算器的出现。
19世纪,巴贝奇将计算工具的概念更往前推,试图创建第一个可编程式计算器,但他建造的机器太重了,因而无法 *** 作。
20世纪,20世纪70年代开始,微处理器技术被吸纳进计算器制程,最初的微处理器是Intel于1971年为日本名为Busicom的计算器公司生产的,1972年惠普推出第一款掌上科学计算器HP-35。
扩展资料:
计算工具的历史演变过程:
1、石块、贝壳计数
原始社会,人类智力低下,当时把石块放进皮袋,或用贝壳串成珠子,用“一一对应”的方法,计算需要计数的物品。
2、结绳计数
就是在长绳上打结记事或计数,这比用石块贝壳方便了许多。
3、手指计数
人类的十个手指是个天生的“计数器”。原始人不穿鞋袜,再加上十个足趾,计数的范围就更大了。
至今,有些民族还用“手”表示“五”,用“人”表示“二十”,据推测,“十进制”被广泛运用,很可能与手指计数有关。
4、小棒计数
利用木、竹、骨制成小棒记数,在我国称为“算筹”。它可以随意移动、摆放,较之上述各种计算工具就更加优越了,因而,沿用的时间较长。
刘徽用它把圆周率计算到3.1410,祖冲之更计算到小数点后第七位。在欧洲,后来发展到在木片上刻上条纹,表示债务或税款。劈开后债务双方各存一半,结帐时拼合验证无误,则被认可。
5、珠算
珠算是以圆珠代替“算筹”,并将其连成整体,简化了 *** 作过程,运用时更加得心应手。它起源于中国。
元代末年(1366年)陶宗义著《南村辍耕录》中,最初提到“算盘”一词,并说“拨之则动”。十五世纪《鲁班木经》中,详细记载了算盘的制作方法。
到了现代,一种新型的电子算盘已经问世,它把算盘与电子计算器的长处集为一体,是一种中外结合的新型计算工具。
6、计算尺
公元1520年,英国人甘特发明了计算尺,运用到一些特殊的运算中,快速、省时。
7、手摇计算机
最早的手摇计算机是法国数学家巴斯嘉在1642年制造的。它用一个个齿轮表示数字,以齿轮间的咬合装置实现进位。
低位齿轮转十圈,高位齿轮转一圈。后来,经过逐步改进,使它既能做加、减法,又能做乘、除法了,运算的 *** 作更加简捷、快速。
8、电子计算机
随着近代高科技的发展,电子计算机在二十世纪应运而生。它的出现是“人类文明最光辉的成就之一”,标志着“第二次工业革命的开始”。
其运算效率和精确度之高,是史无前例的。在此之前,英国数学家桑克斯用了22年的精力,把圆周率π算到小数点后707位。
参考资料来源:百度百科-计算器
要控制半导体的bit,首先需要设计一个电路来连接和控制半导体,通常使用微控制器、数字信号处理器(DSP)或字面算法等实现。其次,使用编程语言定义一系列逻辑来控制半导体,以使它们在合适的时间段执行正确的动作。半导体识别的原理:,在一块集成有成千上万半导体器件的“平板”上,手指贴在其上与其构成了电容(电感)的另一面,由于手指平面凸凹不平,凸点处和凹点处接触平板的实际距离大小就不一样,形成的电容/电感数值也就不一样,设备根据这个原理将采集到的不同的数值汇总,就完成了指纹的特征采集。
一、半导体指纹器的优势:
1、半导体指纹识别模块只识别活体指纹,所以其防伪性能好,安全性高。
2、半导体指纹识别模块具有非常高的灵敏度和识别精度,相对于光学扫描进度高,采集的速度也更快。
3、半导体指纹识别相对于光学其功耗就小的多,体积也要小一点。
不过半导体指纹头也存在它的劣势
二、半导体指纹头的劣势:
1、半导体指纹识别模块成本、造价较高;并容易受到静电的影响,有时识别器存在读取不到指纹。
2、半导体指纹识别模块不易保养,耐磨性不够。从而影响其性能和寿命。
光学指纹头和半导体指纹头并没有“谁更好”这一说。只有两者适用的环境不同,功能侧重方向不同而已,可以说是各有优势
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)