等温线(isotherm),即图上温度值相同各点的连线,称之为等温线。
1799-1804年,德国地理学家洪堡在广泛考察南北美洲和亚洲内陆的基础上,揭示了自然界各种现象之间的联系,提出借助气象要素平均值可阐明气候规律性,创造了用等温线表示平均气温的制图方法。1817年绘制了世界上第一幅等温线图。
等温线平直表示影响气温的因素单一,如等温线与纬线平行,说明影响气温的因素是太阳辐射。但是在大多数情况下,由于气温影响因素的多样性,除太阳辐射外,还有洋流、地面状况、大气环流等,它们相互作用、相互影响,从而使等温线发生弯曲变形。一月份大陆上等温线向南凸,海洋上等温线向北凸
半导体制冷片原理:
由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到另外一边造成温差而形成冷热端。
冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。制冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。
半导体制冷片作为特种冷源,在技术应用上具有以下的优点和特点:
1、不需要任何制冷剂,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。
2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于1。因此使用一个片件就可以代替分立的加热系统和制冷系统。
3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。
4、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差。
5、半导体制冷片的反向使用就是温差发电,半导体制冷片一般适用于中低温区发电。
6、半导体制冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话,功率就可以做的很大,因此制冷功率可以做到几毫瓦到上万瓦的范围。
7、半导体制冷片的温差范围,从正温90℃到负温度130℃都可以实现。
网上查到的,有一个说选C的,剩下看到的都选的B. B:在杂质半导体中,多数载流子的浓度主要取决于掺入的杂质浓度,而少数载流子的浓度主要取决于温度. 还查到一段(没看太懂):你说的高低掺杂应当是简并与非简并的问题,在非简并情况下,即低掺杂下,分布函数可以简化为玻尔兹曼分布,此时多子浓度随温度的变化主要分三个区域,低温弱电离区,常温全电离区和高温本征激发区,第一个区域多子浓度随温度的升高而增大,主要是由于杂质随温度的升高开始电离,常温下杂质全电离,此时多子浓度随温度的升高不再剧烈变化,到高温时,半导体内的本征电离产生的本征载流子浓度已经超过了杂质电离浓度,此时半导体的多子浓度又会急剧增大. 简并态(高掺杂)下半导体杂质无法全电离,高掺杂实际上是费米能级很接近甚至进入导带或价带中,此时杂质能级与导带和价带中的能级发生简并,其结果就是导致禁带宽度变小,此时多子浓度随温度的变化与本征半导体类似,随温度的升高而增大.欢迎分享,转载请注明来源:内存溢出
评论列表(0条)