1.1 金属 - 半导体 - 绝缘体
我们知道,自然界中的物质大致可分为气体、液体、固体、等离子体 4 种基本形态。在固体材料中,根据其导电性能的差异,又可分为金属、半导体和绝缘体。例如,铜、铝、金、银等金属;它们的导电本领都很大,是良好的导体;橡胶、塑料、电木等导电本领很小,是绝缘体;制造半导体器件的主要材料硅、锗、砷化镓等,它们的导电本领比导体小而比绝缘体大,叫做半导体。
物体导电本领的大小可用 电 阻 率 来表示。金属导体的电阻率约在 10 -4 W ·cm 以下,绝缘体的电阻率约在 10 9 W ·cm 以上,半导体的电子率是介于二者之间,约在 10 -4 ~ 10 9 W ·cm 。 图 1.1 列出这三类中一些重要材料的电阻率和 电导率 。
图 1.1
1.2 常见的半导体材料
• 元素半导体
有关半导体材料的研究开始于 19 世纪初。多年以来许多半导体已被研究过。 表 1.1 列出周期表中有关半导体元素的部分。在周期表第 IV 族中的元素如硅( Si )、锗( Ge )都是由单一原子所组成的元素半导体。在 20 世纪 50 年代初期,锗曾是最主要的半导体材料。但自 60 年代初期以来,硅已取而代之成为半导体制造的主要材料。现今我们使用硅的主要原因,乃是因为硅器件在室温下有较佳,且高品质的硅氧化层可由热生长的方式产生。经济上的考虑也是原因之一,可用于制造器件等级的硅材料,远比其他半导体材料价格低廉。在二氧化硅及硅酸盐中的硅含量占地表的 25 %,仅次于氧。到目前为止,硅可说是周期表中被研究最多且技术最成熟的半导体 元素 。
表 1.1 周期表中于半导体相关的部分
• 化合物半导体
近年来一些 化合物 半导体已被应用于各种器件中。 表 1.2 列出与两种元素半导体同样重要的化合物半导体。二元化合物半导体是由周期表中的两种元素组成。例如, III-V 族元素化合物半导体砷化镓( GaAs )是由 III 族元素镓( Ga )及 V 族元素砷( As )所组成。
除了二元化合物半导体外,三元及四元半导体化合物半导体也各有其特殊用途。由 III 族元素铝( Al )、镓( Ga )及 V 族元素砷( As )所组成的合金半导体 Al x Ga 1-x As 即是一种三元化合物半导体,而具有 A x B 1-x C y D 1-y 形式的四元化合物半导体则可由许多二元及三元化合物半导体组成。例如,合金半导体 Ga x In 1-x As y P 1-y 是由磷化镓( GaP )、磷化铟( InP )、砷化铟( InAs )及砷化镓( GaAs )所组成。与元素半导体相比,制作单晶体形式的化合物半导体通常需要较复杂的程序。
许多化合物半导体具有与硅不同的电和光的特性。这些半导体,特别是砷化镓( GaAs ),主要用于高速光电器件。虽然化合物半导体的技术不如硅半导体技术成熟,但硅半导体技术的快速发展,也同时带动化合物半导体技术的成长。
1.3 半导体导电性的特点
实际上,金属、半导体和绝缘体之间的界限并不是绝对的。通常,当半导体中的杂质含量很高时,电导率很高,呈现出一定的金属性,而纯净半导体在低温下的电导率很低,呈现出绝缘性。一般半导体和金属的区别在于半导体中存在着 禁带 而金属中不存在禁带;区分半导体和绝缘体则更加困难,通常根据它们的禁带宽度及其温度特性加以区分。
半导体的导电性究竟具有哪些特点呢?大致可归纳以下几个方面:
( 1 )半导体的电阻率对温度的反应灵敏。纯净半导体的电阻率随温度变化很显著,而且电阻率随温度升高而下降。例如纯锗,当温度从 20 o C 升高到 30 o C 时,电阻率就降低一半左右。而金属的电阻率随温度的变化比较小,而且随温度升高电阻率增大。
( 2 )微量的杂质能显著地改变半导体的电阻率。例如在纯硅中掺入 6 ′ 10 15 /cm 3 的杂质磷或锑,即在硅中掺入千万分之一的杂质,就能使它的电阻率从 2.15 ′ 10 5 W ·cm 减小到 1 W ·cm ,降低了 20 万倍。晶格结构的完整与否也会对半导体导电性能有极大的影响。因此在制作半导体器件时除人为地在半导体中掺入有用杂质来控制半导体的导电性外,还要严格防止一些有害杂质对半导体的沾污,以免改变半导体的导电性能,使生产出来的器件质量下降,甚至报废。但金属中含有少量杂质时,看不出电阻率会有什么显著的变化。
( 3 )适当的光照可使半导体的电阻率显著改变。当某种频率的光照射半导体时,会使半导体的电阻率显著下降,这种现象叫光电导。自动控制中用到的光敏电阻就是利用半导体的光电导特性来制成的。但是,金属的电阻率不受光照影响。
总之,半导体的导电性能非常灵敏地依赖于外界条件、材料的纯度以及晶体结构的完整性等。半导体的导电性能所以有上述特点是由半导体内部特殊的微观结构所决定的,后面将叙述半导体导电的内在规律。
在能带结构模型中,金属的导电能力是由费米能级附近的电子移动能力决定的。而半导体的导电能力是由价带顶附近的空穴,以及导带底的电子的共同的移动能力决定的。电子,空穴的有效质量不相等(同一个能带中的电子,空穴的有效质量是相等的;1、半导体通常是指导电率介于导体与绝缘体之间的材料. 电导率的范围是:10^(-8)→10³ (西门子/厘米) 也就是应用了它们的半导电性. 2、半导体是现代电子仪器的最基本的材料,这些仪器包括:无线电、电脑、电话等等. 3、半导体器件包括各种二极管、三极管、太阳能电池、硅控放大器、数字电路、集成电路等等. 4、电导率低于10^(-8)西门子/厘米)的材料称为绝缘体. 电导率高于10³(西门子/厘米)的材料成为导体. 所有的导体都有大量的自由电子. 5、电阻是指导体内阻碍电流流动的能力,电阻率越大,阻碍电流的能力就越强.电导率的倒数就是电阻率. 6、任何导体、半导体、绝缘体,都有或多或少的阻碍电流的能力,电阻率不可能为零,在超低温下,电阻率趋向于0. 7、任何消耗电能的器件,包括导线都有电阻. 8、汉语中的电阻概念比较笼统,英语中有明确区分:Resistor = 电阻器;Resistance = 电阻值;Resistivity = 电阻率.通常我们将电阻器与电阻值混为一谈,都称为电阻.任何用电器都是电阻器,任何导线本身也是电阻器.导线消耗电能,降低电压,所以,我们需要变压器升高电压,保持正常的工作电压.但是经过变压器之后,电流强度就下降了.导线自然是导体,功能是导电,是尽可能的减低传输过程中的能量损失.用电器是将电能转换成其他能量的转换器,要的就是消耗电能,转化成其他能量. 9、实验室的电阻器完全是消耗电能的元件,并非将电能转换成其他能量.它的功用只是用于控制实验时的电流强度、分出去的电压(可变电阻可做分压器)符合实验的要求,以便实验顺利进行.欢迎分享,转载请注明来源:内存溢出
评论列表(0条)