通信芯片的相关特点

通信芯片的相关特点,第1张

小巧玲珑

美国模拟器件公司(ADI) 日前新研制成功世界上第一款用于无线通信手机的完全基于 (RAM)的基带芯片组。这款小小的SoftFone芯片组,体积小巧,仅像火柴盒一般大小,能够使移动电话厂商和终端用户轻松定制、选择功能。这种芯片组的功耗较小,成本也比较低,因而极具竞争优势。SoftFone芯片组完全基于RAM,GSM移动电话厂商可利用普通硬件平台装入不同版本的软件,以支持从高端到低端的全系列手机。ADI的这款SoftFone芯片组将于今年8月初大批面市。

为了进一步缩小通信芯片的体积,科学家们正在研制一系列的采用非硅材料制造的芯片,例如砷化镓(GaAs)芯片、锗(Ge)芯片以及硅锗(SiGe)芯片等。 这些非硅通信芯片的体积更小巧,能够用来制造轻、薄、短、小的通信设备。

为了使通信终端设备做得越来越小,在数字蜂窝电话中,芯核RISC处理器构成一个高集成度子系统的一部分。基带部分,即RF 部分在通常的情况下集成一个RISC微控制器、一个低成本DSP、键盘、存储器、屏控制器和连接逻辑。ARM公司的ARM7 TDM1十分适合于这种应用,其每兆赫仅消耗1.85mW,相对低的 13MHz 速率与GSM900系统中的微控制器同步。RISC芯核在芯片上仅占4.9m2的面积,可以在较低的电压下工作,因而片上存储器的功耗往往低于片外存储器。ROM的功耗也小于SRAM。在可能的情况下,采用空载模式更能节省功率。在一般情况下,片上必需包括一个锁相环为DSP提供时钟信号。

高集成度在DSP芯片中也应用得很广泛。 为用低功耗的小型器件进行高水准的调制和解调算法作业,已经开发出包含有DSP内核电路的单片算法IC。在21世纪初的几年内,随着微细化工艺技术的不断发展,在更多地采用0.25μmCMOS工艺之后,集成度将会得到进一步的提高,而电压和功耗将会进一步降低,从而能够将用于协议处理的CPU内核电路也全部集中制作在一枚小小的芯片上。 Texas Instruments(TI)公司日前新推出的TMS320C6203产品,有250MHz、300MHz两种型号,执行速度高达2900MIPS,是目前世界上速度最快的DSP产品。这款芯片集成了7Mbits内存,是目前在单机芯DSP里集成的最大内存,采用18m2的BGA封装,能够节省插件板/系统空间,适用于3G无线基站、电信系统和网络基础设施的设备。

使通信芯片实现微型化的另一种有效的途径,是在半导体通信芯片制造工艺中采用更先进的光刻技术,科学家们让光透过掩膜形成一个影像,利用透镜使这个影像缩小,并且巧妙地利用这种投影光,把芯片电路的轮廓投射到涂有一层硅的光刻胶上面,通过对透镜的改进,缩短光的波长,并且改进光阻材料,就可以把芯片电路蚀刻得更加细致入微,更加精确,从而制造出集成度更高、体积更小的通信芯片,使用这种芯片的移动通信设备将变得更加便携。

快如闪电

第三代移动通信正在崛起,3G与第一代以及第二代移动通信技术最大的不同,在于3G需要面向Internet和数据通信。因此,对新一代的手机IC芯片提出了更好的要求,要求手机IC芯片具有更强大的数据存储和数据处理能力,必需拥有更广阔的存储空间,用来存储从网上下载的各种数据信息。此外,还要求新一代手机中被处理的信息不再仅仅是语音和指令,而是更复杂的多媒体信息,因此,要求新一代手机IC芯片必需拥有更高速的数据处理能力,要求其速度快如闪电。

为了使新一代手机拥有更大的存储能力和更快的数据处理能力,将会提高手机的功耗,而要达到大数据量存储、高速处理和功耗不增加这三种要求,新一代手机应当采用嵌入式flash(快闪)存储技术、高性能的DSP和降低电池电压等各种手段。

高速接口IC,用于通信网络的中继传输和几个通信系统之间的高速传输,传输速度已经按照ITU规定的SHD实现标准化。除了与光缆接口的激光器驱动电路和光接收电路等光电变换电路之外,其它的诸如帧同步、纠错以及传输总线的多路分离等,都需要利用目前已经向着微细化发展的CMOS 技术的高集成度将其制作在一枚小小的芯片上。目前,以0.35μmCMOS技术制作的通信接口IC,能够以2.4Gbps的速度进行各种传输信息的处理。

蓝色巨人IBM和北方电讯(Nortel) 公司的科学家们还联合研制出了一款制造材料既非硅、也非锗的新型芯片,这就是SiGe芯片,它是由硅(Si)和锗(Ge)两种材料的混合物制造而成的,称为SiGe混合物半导体芯片。 根据这两家公司的合作协议,Nortel公司负责为几种高速通信应用程序专门设计这种新型SiGe芯片,而IBM公司则负责专门生产这种芯片。 这种SiGe芯片是目前其他一些非硅半导体芯片诸如砷化镓芯片的有益的补充,SiGe芯片能够有力地支持研发更复杂、高速的通信新产品。与砷化镓芯片比较,SiGe芯片有着其明显的优势,SiGe芯片的集成度更高,体积更小,功耗也更少。此外,SiGe芯片还有一个突出的优点,它可以用现有的硅芯片生产设备进行加工,而不必另外添置其它的加工设备,从而能够有效地降低生产成本,与其他的非硅芯片更具有价格优势。

美国密执安大学工程学院在最近研制成功一种新型光学芯片,这种芯片可以大大增加数据高速公路的信息容量,使上网用户获益匪浅。这种芯片是目前高速光电子信号检测的世界纪录保持者,它可以接收速度高达24Mbps的以激光脉冲传输的数据,而目前绝大多数同类产品能够处理的数据传输速度,仅为11兆位/秒。这所工程学院新推出的光学芯片,在同一种半导体叠层中集成了光检测仪和放大装置,不必采用会增加混合光感接收器制造成本的连接电线。这种芯片的电路包括一个可检测输入光束的P 型光电二极管和一个放大高速信号的异结双极晶体管。这种芯片是在密执安大学固态电子实验室采用一种半导体工业最常用的单步分子束外延生长工艺研制成功的。虽然目前这种光学芯片的成本还比较高,但是,一旦这种制造技术实现了标准化,那么,光学芯片的成本和价格就会大大降低,届时,光学芯片就会在电子业界和通信业界得到广泛的应用。

功能多样

欧洲最大的半导体制造厂商Philips半导体公司日前推出新型的GSM GPRS芯片组,以便实现基于GSM移动电话系统的高速数据传输,为移动通信Internet和个人多媒体服务热潮推波助澜。这种芯片组基于Philips并购的 VLSI 技术公司的OneC基带控制器,这是目前业界最高集成度的GSM解决方案,它将成为利用 GPRS进行高速数据传输的新一代移动电话的核心。这种综合GPRS方案的射频部分是由Philips开发的新型双带RF芯片组构成的。GPRS OneC 和Philips以及第三方的RF方案相容,成为一款面向3G的新产品。Philips的下一代将会集成更多的新功能,例如GPS、MP3以及Bluetooth等,并且直接面向UMTX、WCDMA以及CDMA-2000等3G移动通信标准。

Philips公司推出的两款多功能电话通信芯片TEA1118以及 TEA1118A,可以应用于可视电话、传真电话一体机和室内无绳电话基地台等。TEA1118 芯片具有各种DECT应用方案的多种语音电路功能,TEA1118A芯片也具有各种CTO/CT1模拟室内无绳电话所需的DTMF拨号插入和噪声控制等多种功能。内置拨号和接口的低压芯片TEA110A,则属于TEA1112A的低价产品,采用DIP14/SO14两种封装,能够为不设发光二极管挂上/ 挂下指示与传声器噪声抑制功能的电话提供具有价格竞争能力的解决方案。TEA111X系列的芯片产品则采用高密度双极处理技术生产而成,可以使新型电话的设计大为简化。

AMD公司新推出两款最先进的手机用flash存储器芯片:32MB的Am29BDS323和64MB的Am29BDS643,这两款芯片都采用AMD公司创新的同步读/写结构、高性能爆发模式接口以及超低电压技术。这两款芯片可以在40MHz~54MHz的频率范围内进行运作,最适宜用于新一代的移动通信手机,能够支持多种创新的功能,例如上Internet的功能、PDA、视频数据分流传输以及MP3等功能。Am29BDS323芯片的存取时间为20ns,而Am29BDS643芯片的存取时间仅为13.5ns,比其他的竞争产品快,这种高速存取功能可以大大减少读取flash代码以及数据所需的等待状态次数,从而确保微处理器可以充分发挥其性能。Nokia公司由于采用分组无线通信服务(GPRS)、EDGE以及第三代无线通信技术的新一代手机需要支持高速的数据传输,因而需要得到先进的flash芯片的支持,而AMD公司推出的这两款flash能够满足这种需求。

为了研制出多功能的移动通信便携式终端设备,要求通信芯片具有更高的集成度,从而将多种芯片集成到一块芯片上,成为一体化芯片。Agere Systems公司(原Lucent Technologies微电子部),集中力量专攻通信设备的研究开发,成绩斐然,这家公司曾经创造了年销售通信芯片30亿美元的业绩,其中,一体化多功能芯片占58%,居该公司所有产品销售总额的12%。Agere最近还新推出了一款由11 个芯片组集成为一体的多功能移动电话。另外一家业界巨头TI ,最近几年将其研发重点进行了重新定位,加大了研发DSP及其他多功能通信芯片的力度,在研制开发新款多功能通信芯片方面表现不俗,十分引人注目。

功耗不断降低

长期以来,科学家们一直致力于研制能够显著地降低能耗的产品。最近,一种新推出的利用反向计算的方法设计的微处理器芯片可以大大降低耗电量。这种设计方法将导致功能强大的微处理器问世,这种微处理器可用于诸如掌上型计算机、移动电话和便携式计算机等电流驱动的装置中,并且可以大大延长这类装置的运行时间。美国麻省理工学院负责反向计算项目的著名科学家迈克尔. 弗兰克在最近指出:“在不使用昂贵制冷系统的情况下,我们的研究已经接近了高速微处理器所能散发热量的物理极限”。弗兰克和他的同事们认为,除非散热问题能够得到完美的解决,否则“摩尔定律”就将变得不再适用了。他们还指出,反向计算所涉及的技术,是解决微处理器散热问题的最佳方案。在反向计算中,每个运算周期后存储在微处理器中的信息并没有完全被擦掉,擦掉信息时微处理器是不会发热的,而是保留了某些信息,供下一个运算周期使用。科学家们制造的理论模型表明,制造出只消耗相当于目前微处理器1%电能的功能强大的微处理器是完全可能的。加州大学信息学学院的一个研究小组最近宣布,他们已经研制出世界上第一块利用某些反向计算技术的微处理器芯片。

Motorola公司半导体部新推出的FLEX芯片组,提供了处理FLEX 协议所需的所有器件,加速了专业人员设计的寻呼机产品投放市场的速度。FLEX 协议是开发高速寻呼机de facto标准,它向专业人员提供一组共同的规则,确保寻呼机的使用能够跨越不同寻呼台站的设备。 Motorola FLEX 芯片组包括 : 68175FLEX 字符数字芯片,68181FLEX漫游芯片,68175FCB FLEX开发和新款模拟-数字转换芯片68176, 它能够将68176模拟/ 数字芯片插在 FLEX 开发板上 ,并且将 900MHz 射频接收器连接到68175FLEX字符芯片或者68181漫游芯片上。ADC把由RF接收器检测到的4级声频信号转换为2位数字信号,以供系统其余部分使用。 Motorola提供的68176芯片具有更宽的工作电压范围、较低的电源电压和比其它ADC芯片更低的成本,深受广大用户青睐。

外延(Epitaxy, 简称Epi)工艺是指在单晶衬底上生长一层跟衬底具有相同晶格排列的单晶材料,外延层可以是同质外延层(Si/Si),也可以是异质外延层(SiGe/Si 或SiC/Si等);同样实现外延生长也有很多方法,包括分子束外延(MBE),超高真空化学气相沉积(UHV/CVD),常压及减压外延(ATM &RP Epi)等等。本文仅介绍广泛应用于半导体集成电路生产中衬底为硅材料的硅(Si)和锗硅(SiGe)外延工艺。根据生长方法可以将外延工艺分为两大类(表1):全外延(Blanket Epi)和选择性外延(Selective Epi, 简称SEG)。工艺气体中常用三种含硅气体源:硅烷(SiH4),二氯硅烷(SiH2Cl2, 简称DCS) 和三氯硅烷(SiHCl3, 简称TCS);某些特殊外延工艺中还要用到含Ge和C的气体锗烷(GeH4)和甲基硅烷(SiH3CH3);选择性外延工艺中还需要用到刻蚀性气体氯化氢(HCl),反应中的载气一般选用氢气(H2)。 外延选择性的实现一般通过调节外延沉积和原位(in-situ)刻蚀的相对速率大小来实现,所用气体一般为含氯(Cl)的硅源气体DCS,利用反应中Cl原子在硅表面的吸附小于氧化物或者氮化物来实现外延生长的选择性;由于SiH4不含Cl原子而且活化能低,一般仅应用于低温全外延工艺;而另外一种常用硅源TCS蒸气压低,在常温下呈液态,需要通过H2鼓泡来导入反应腔,但价格相对便宜,常利用其快速的生长率(可达到5 um/min)来生长比较厚的硅外延层,这在硅外延片生产中得到了广泛的应用。IV族元素中Ge的晶格常数(5.646A与Si的晶格常数(5.431A差别最小,这使得SiGe与Si工艺易集成。在单晶Si中引入Ge形成的SiGe单晶层可以降低带隙宽度,增大晶体管的特征截止频率fT(cut-off frequency),这使得它在无线及光通信高频器件方面应用十分广泛;另外在先进的CMOS集成电路工艺中还会利用Ge跟Si的晶格常数失配(4%)引入的晶格应力来提高电子或者空穴的迁移率(mobility),从而增大器件的工作饱和电流以及响应速度,这正成为各国半导体集成电路工艺研究中的热点。由于本征硅的导电性能很差,其电阻率一般在200ohm-cm以上,通常在外延生长的同时还需要掺入杂质气体(dopant)来满足一定的器件电学性能。杂质气体可以分为N型和P型两类:常用N型杂质气体包括磷烷(PH3)和砷烷(AsH3),而P型则主要是硼烷(B2H6)。硅及锗硅外延工艺在现代集成电路制造中应用十分广泛,概括起来主要包括:1.硅衬底外延:硅片制造中为了提高硅片的品质通常在硅片上外延一层纯净度更高的本征硅;或者在高搀杂硅衬底上生长外延层以防止器件的闩锁(latch up)效应。2.异质结双极晶体管(Hetero-junction Bipolar Transistor,简称HBT)基区(base)异质结SiGe外延(图1):其原理是在基区掺入Ge组分,通过减小能带宽度,从而使基区少子从发射区到基区跨越的势垒高度降低,从而提高发射效率γ, 因而,很大程度上提高了电流放大系数β。在满足一定的放大系数的前提下,基区可以重掺杂,并且可以做得较薄,这样就减少了载流子的基区渡越时间,从而提高器件的截止频率fT (Cut-Off Frequency),这正是异质结在超高速,超高频器件中的优势所在。 3.CMOS源(source)漏(drain)区选择性Si/SiGe外延:进入90nm工艺时代后,随着集成电路器件尺寸的大幅度减小,源漏极的结深越来越浅,需要采用选择性外延技术 (SEG)以增厚源漏极(elevated source/drain)来作为后续硅化(silicide)反应的牺牲层(sacrificial layer) (图2),从而降低串联电阻,有报道称这项技术导致了饱和电流(Idsat)有15%的增加。 而对于正在研发中的65/45nm技术工艺,有人采用对PMOS源漏极刻蚀后外延SiGe层来引入对沟道的压应力(compressive stress) (图3),以提高空穴(hole)的迁移率(mobility),据报道称实现了饱和电流(Idsat)35%的增加。 应变硅(strain silicon)外延:在松弛(relaxed)的SiGe层上面外延一层单晶Si,由于Si跟SiGe晶格常数失配而导致Si单晶层受到下面SiGe层的拉伸应力(tensile stress)而使得电子的迁移率(mobility)得到提升(图4),这就使得NMOS在保持器件尺寸不变的情况下饱和电流(Idsat)得到增大,而Idsat的增大意味着器件响应速度的提高,这项技术正成为各国研究热点。一般而言,一项完整的外延工艺包括3个环节:首先,根据需要实现的工艺结果对硅片进行预处理,包括去除表面的自然氧化层及硅片表面的杂质,对于重搀杂衬底硅片则必须考虑是否需要背封(backseal)以减少后续外延生长过程中的自搀杂。然后在外延工艺过程中需要对程式进行优化,如今先进的外延设备一般为单片反应腔,能在100秒之内将硅片加热到1100℃以上,利用先进的温度探测装置能将工艺温度偏差控制在2度以内,反应气体则可通过质量流量计(MFC)来使得流量得到精准控制。在进行外延沉积之前一般都需要H2烘烤(bake)这一步,其目的在于原位(in-situ)去除硅片表面的自然氧化层和其他杂质,为后续的外延沉积准备出洁净的硅表面状态。 最后在外延工艺完成以后需要对性能指标进行评估,简单的性能指标包括外延层厚度和电特性参数, 片内厚度及电特性均匀度(uniformity),片与片间的重复性(repeatability),杂质颗粒(particle)数目以及污染(contamination);在工业生产中经常要求片内膜厚及电性的均匀度<1.5%(1σ),对硅片厂家来说经常还要考查外延层的扩展电阻率曲线(SRP)以确定是否有污染存在及污染物杂质的量。特别地,对于SiGe工艺我们经常还需要测量Ge的含量及其深度分布,对于有搀杂的工艺我们还需要知道搀杂原子的含量及深度分布。另外晶格缺陷(defect)也是我们必须考虑的问题,一般而言,常常出现的有四种缺陷,包括薄雾(haze),滑移线(slip line), 堆跺层错(stacking fault) 和穿刺(spike),这些缺陷的存在对器件性能有很大影响,可以导致器件漏电流增大甚至器件完全失效而成为致命缺陷(killer effect)。一般来讲消除这些缺陷的办法是检查反应腔体漏率是否足够低(<1mTorr/min),片内工艺温度分布是否均匀,承载硅片的基座或准备的硅片表面是否洁净、平坦等。经过外延层性能指标检测以后我们还需要对外延工艺进一步优化,以满足特定器件的工艺要求。硅衬底外延:硅片制造中为了提高硅片的品质通常在硅片上外延一层纯净度更高的本征硅;或者在高搀杂硅衬底上生长外延层以防止器件的闩锁(latch up)效应。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8920241.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存