作者/朱公子
第三代半导体
我估摸着只要是炒股或者是关注二级市场的朋友们,这几天一定都没少听这词儿,如果不是大盘这几天实在是太惨了,估计炒作行情会比现在强势的多得多。
那到底这所谓的第三代半导体,到底是个什么玩意?值不值得炒?未来的逻辑在哪儿?
接下来,只要您能耐着性子好好看,我保证给它写的人人都能整明白,这可比你天天盯着大盘有意思的多了!
一、为什么称之为第三代半导体?
1、重点词
客官们就记住一个关键词—— 材料 ,这就是前后三代半导体之间最大的区别。
2、每一代材料的简述
①第一代半导体材料: 主要是指硅(Si)、锗元素(Ge)半导体材料。
兴起时间: 二十世纪五十年代。
代表材料: 硅(Si)、锗(Ge)元素半导体材料。
应用领域: 集成电路、电子信息网络工程、电脑、手机、电视、航空航天、各类军事工程和迅速发展的新能源、硅光伏产业。
历史 意义: 第一代半导体材料引发了以集成电路(IC)为核心的微电子领域迅速发展。
对于第一代半导体材料,简单理解就是:最早用的是锗,后来又从锗变成了硅,并且几乎完全取代。
原因在于: ①硅的产量相对较多,具备成本优势。②技术开发更加完善。
但是,到了40纳米以下,锗的应用又出现了,因为锗硅通道可以让电子流速更快。现在用的锗硅在特殊的通道材料里会用到,将来会涉及到碳的应用,下文会详细讲解。
②第二代半导体材料: 以砷化镓(GaAs)、锑化铟(InSb)为代表,是4G时代的大部分通信设备的材料。
兴起时间: 20世纪九十年代以来,随着移动通信的飞速发展、以光纤通信为基础的信息高速公路和互联网的兴起,以砷化镓、锑化铟为代表的第二代半导体材料开始崭露头角。
代表材料: 如砷化镓(GaAs)、锑化铟(InSb);三元化合物半导体,如GaAsAl、GaAsP;还有一些固溶体半导体,如Ge-Si、GaAs-GaP;玻璃半导体(又称非晶态半导体),如非晶硅、玻璃态氧化物半导体;有机半导体,如酞菁、酞菁铜、聚丙烯腈等。
应用领域: 主要用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料。
因信息高速公路和互联网的兴起,还被广泛应用于卫星通讯、移动通讯、光通信和 GPS 导航等领域。
性能升级: 以砷化镓为例,相比于第一代半导体,砷化镓具有高频、抗辐射、耐高温的特性。
总结: 第二代是使用复合物的。也就是复合半导体材料,我们生活中常用的是砷化镓、磷化铟这一类材料,可以用在功放领域,早期它们的速度比较快。
但是因为砷含剧毒!所以现在很多地方都禁止使用,砷化镓的应用还只是局限在高速的功放功率领域。而磷化铟则可以用来做发光器件,比如说LED里面都可以用到。
③第三代半导体材料: 以氮化镓(GaN)、碳化硅(SiC)、氧化锌(ZnO)、金刚石为四大代表,是5G时代的主要材料。
起源时间: M国早在1993年就已经研制出第一支氮化镓的材料和器件。而我国最早的研究队伍——中国科学院半导体研究所,在1995年也起步了该方面的研究。
重点: 市场上从半年前炒氮化镓的充电器时,市场的反应一直不够强烈,那是因为当时第三代半导体还没有被列入国家“十四五”这个层级的战略部署上,所以单凭氮化镓这一个概念,是不足以支撑整个市场逻辑的!
发展现状: 在5G通信、新能源 汽车 、光伏逆变器等应用需求的明确牵引下,目前,应用领域的头部企业已开始使用第三代半导体技术,也进一步提振了行业信心和坚定对第三代半导体技术路线的投资。
性能升级: 专业名词咱们就不赘述了,通俗的说,到了第三代半导体材料这儿,更好的化合物出现了,性能优势就在于耐高压、耐高温、大功率、抗辐射、导电性能更强、工作速度更快、工作损耗更低。
有一点我觉得需要单独提一下:碳化硅与氮化镓相比较,碳化硅的发展更早一些,技术成熟度也更高一些;两者有一个很大的区别是热导率:在高功率应用中,碳化硅占据统治地位;氮化镓具有更高的电子迁移率,因而能够比碳化硅具有更高的开关速度,所以在高频率应用领域,氮化镓具备优势。
第三代半导体的应用
咱们重点说一说碳化硅 。碳化硅在民用领域应用非常广泛:其中电动 汽车 、消费电子、新能源、轨道交通等领域的直流、交流输变电、温度检测控制等。
咱先举两个典型的例子:
1.2015年,丰田 汽车 运用碳化硅MOSFET的凯美瑞试验车,逆变器开关损耗降低30%。
2.2016年,三菱电机在逆变器上用到了碳化硅,开发出了全世界最小马达。
而其他军用领域上,碳化硅更是广泛用于喷气发动机、坦克发动机、舰艇发动机、风洞、航天器外壳的温度、压力测试等。
为什么我说要重点说说碳化硅呢?因为半导体产业的基石正是 芯片 ,而碳化硅,正因为它优越的物理性能,一定是将来 最被广泛使用在制作半导体芯片上的基础材料 !
①优越的物理性能:高禁带宽度(对应高击穿电场和高功率密度)、高电导率、高热导率。而且,碳化硅MOSFET将与硅基IGBT长期共存,他们更适合应用在高功率和高频高速领域。
②这里穿插了一个陌生词汇:“禁带宽度”,这到底是神马东西?
这玩意如果解释起来,又得引申出如“能带”、“导带”等一系列的概念,如果不是真的喜欢,我觉得大家也没必要非去研究这些,单说在第三代半导体行业板块中,能知道这一个词,您已经跑赢90%以上的小散了。
客观们就主要记住一个知识点吧: 对于第三代半导体材料,越高的禁带宽度越有优势 。
③主要形式:“衬底”。半导体芯片又分为:集成电路和分立器件。但不论是集成电路还是分立器件,其基本结构都可划分为“衬底 -外延-器件”结构,而碳化硅在半导体中存在的主要形式是作为衬底材料。
④生产工艺流程:
原料合成——晶体生长——晶锭加工——晶体切割——晶片研磨——晶片抛光——晶片检测——晶片清洗
总结:晶片尺寸越大,对应晶体的生长与加工技术难度越大,而下游器件的制造效率越高、单位成本越低。目前国际碳化硅晶片厂商主要提供4英寸至6英寸碳化硅晶片,CREE、II-VI等国际龙头企业已开始投资建设8英寸碳化硅晶片生产线。
⑤应用方向:科普完知识、讲完生产制造,最终还是要看这玩意儿怎么用,俩个关键词:功率器件、射频器件。
功率器件: 最重要的下游应用就是—— 新能源 汽车 !
现有技术方案:每辆新能源 汽车 使用的功率器件价值约700美元到1000美元。随着新能源 汽车 的发展,对功率器件需求量日益增加,成为功率半导体器件新的增长点。
新能源 汽车 系统架构中,涉及到功率器件包括——电机驱动系统、车载充电系统(OBC)、电源转换系统(车载DC/DC)和非车载充电桩。碳化硅功率器件应用于电机驱动系统中的主逆变器。
另外还应用领域也包括——光伏发电、轨道交通、智能电网、风力发电、工业电源及航空航天等领域。
射频器件: 最重要的下游应用就是—— 5G基站 !
微波射频器件,主要包括——射频开关、LNA、功率放大器、滤波器。5G基站则是射频器件的主要应用方向。
未来规模:5G时代的到来,将为射频器件带来新的增长动力!2025年全球射频器件市场将超过250亿美元。目前我国在5G建设全球领先,这也是对岸金毛现在狗急跳墙的原因。
我国未来计划建设360万台-492万台5G宏基站,而这个规模是4G宏基站的1.1-1.5倍。当前我国已经建设的5G宏基站约为40万台,未来仍有非常大的成长空间。
半导体行业的核心
我相信很多客官一定有这样的疑问: 芯片、半导体、集成电路 ,有什么区别?
1.半导体:
从材料方面说 ,教科书上是这么描述的:Semiconductor,是常温下导电性能介于导体与绝缘体之间的一类材料;
按功能结构区分, 半导体行业可分为:集成电路(核心)、分立器件、光电器件及传感器四大类。
2.集成电路(IC, integrated circuit):
最经典的定义就是:将晶体管、二极管等等有源元件、电阻器、电容器等无源元件,按照一定的电路互联,“集成”在一块半导体单晶片上,从而完成特定的电路或者系统功能。
3.芯片:
半导体元件产品的统称 ,是指内含集成电路的硅片,是集成电路的载体,由晶圆分割而成。硅片是一块很小的硅,内含集成电路,它是计算机或者其他电子设备的一部分。
为什么说集成电路,是半导体行业的核心? 那是因为集成电路的销售比重,基本保持在半导体销售额的80%。
比如,2018年全球4700亿美元的半导体销售额中,集成电路共计3900亿美元,占比达84%。
第三代半导体的未来方向
中国半导体业进入IDM模式是大势所趋,其长久可持续性我非常认可。但是讲到IDM,又有一堆非常容易混淆的概念,篇幅实在是太长了,咱们就不再拆分来讲了,你只要知道IDM最牛逼就完事了!
IDM: 直译:Integrated Design and Manufacture, 垂直整合制造 。
1.IDM企业: IDM商业模式,就是国际整合元件制造商模式。其厂商的经营范围涵盖了IC设计、IC制造、封装测试等各个环节,甚至也会延伸到下游电子终端。典型厂商:Intel、三星、TI(德州仪器)、东芝、ST(意法半导体)等。
2.IDM模式优势:
(1)IDM模式的企业,内部有资源整合优势,从IC设计到IC制造所需的时间较短。
(2)IDM企业利润比较高。根据“微笑曲线”原理,最前端的产品设计、开发与最末端的品牌、营销具有最高的利润率,中间的制造、封装测试环节利润率较低。
(3)IDM企业具有技术优势。大多数的IDM企业都有自己的IP(知识产权),技术开发能力比较强,具有技术领先优势。
3.IDM重要性
IDM的重要性是不需要用逻辑去判断的,全球集成电路市场的60%由IDM企业所掌握。比如三星电子、恩智浦、英飞凌、NXP等。
4.中国为什么要发展IDM模式?
IDM模式的优势: 产业链内部直接整合、具备规模效应、有效缩短新产品上市时间、并将利润点留在企业内部。
市场的自然选择: 此外,中国已成为全球最大的集成电路消费市场,并具有丰富的劳动力资源,对于发展自有品牌的IDM具有市场优势和成本优势。
现在,无论是被M国的封锁倒逼出来,还是我们自主的选择,我们都必须开拓出一条中国IDM发展之路!
现状: 目前国内现有的所谓IDM,其制造工艺水平和设计能力相当低,比较集中在功率半导体,产品应用面较窄,规模做不大。我知道,这些事实说出来挺让人沮丧的,但这就是事实。
但正因为我们目前处在相对落后的阶段,才更加需要埋头苦干、咬牙追赶,然后一举拿下!
本来写这篇文章的时候不想说股的,但还是提几只吧,也算是给咱们国家的半导体事业做一点点微小的贡献。
射频类相关优质标的:卓胜微、中天 科技 、和而泰、麦捷 科技 ;
IDM相关优质标的:中环股份、上海贝岭、长电 科技 。
台积电开启晶圆代工时代,成为集成电路中最为重要的一个环节。 1987 年,台积电的成立开启了 晶圆代工时代,尤其在得到了英特尔的认证以后,晶圆代工被更多的半导体厂商所接受。晶圆代工 打破了 IDM 单一模式,成就了晶圆代工+IC 设计模式。目前,半导体行业垂直分工成为了主流, 新进入者大多数拥抱 fabless 模式,部分 IDM 厂商也在逐渐走向 fabless 或者 fablite 模式。
全球晶圆代工市场一直呈现快速增长,未来有望持续 。晶圆代工+IC 设计成为行业趋势以后,受益 互联网、移动互联网时代产品的强劲需求,整个行业一直保持快速增长,以台积电为例,其营业收 入从 1991 年的 1.7 亿美元增长到 2019 年的 346 亿美元,1991-2019 年,CAGR 为 21%。2019 年全球晶圆代工市场达到了 627 亿美元,占全球半导体市场约 15%。未来进入物联网时代,在 5G、 人工智能、大数据强劲需求下,晶圆代工行业有望保持持续快速增长。
晶圆代工行业现状:行业呈现寡头集中。 晶圆代工是制造业的颠覆,呈现资金壁垒高、技术难度大、 技术迭代快等特点,也因此导致了行业呈现寡头集中,其中台积电是晶圆代工行业绝对的领导者, 营收占比超过 50%,CR5 约为 90%。
晶圆代工行业资金壁垒高。 晶圆代工厂的资本性支出巨大,并且随着制程的提升,代工厂的资本支 出中枢不断提升。台积电资本支出从 11 年的 443 亿元增长到 19 年的 1094 亿元,CAGR 为 12%。 中芯国际资本性支出从 11 年的 30 亿元增长到了 19 年的 131 亿元,CAGR 为 20%,并且随着 14 nm 及 N+1 制程的推进,公司将显著增加 2020 年资本性支出,计划为 455 亿元。巨额投资将众多 追赶者挡在门外,新进入者难度极大。
随着制程提升,晶圆代工难度显著提升。 随着代工制程的提升,晶体管工艺、光刻、沉积、刻蚀、 检测、封装等技术需要全面创新,以此来支撑芯片性能天花板获得突破。
晶体管工艺持续创新。 传统的晶体管工艺为 bulk Si,也称为体硅平面结构(Planar FET)。 随着 MOS 管的尺寸不断的变小,即沟道的不断变小,会出现各种问题,如栅极漏电、泄漏功 率大等诸多问题,原先的结构开始力不从心,因此改进型的 SOI MOS 出现,与传统 MOS 结 构主要区别在于:SOI 器件具有掩埋氧化层,通常为 SiO2,其将基体与衬底隔离。由于氧化 层的存在,消除了远离栅极的泄漏路径,这可以降低功耗。随着制程持续提升,常规的二氧 化硅氧化层厚度变得极薄,例如在 65nm 工艺的晶体管中的二氧化硅层已经缩小仅有 5 个氧 原子的厚度了。二氧化硅层很难再进一步缩小了,否则产生的漏电流会让晶体管无法正常工 作。因此在 28nm 工艺中,高介电常数(K)的介电材料被引入代替了二氧化硅氧化层(又称 HKMG 技术)。随着设备尺寸的缩小,在较低的技术节点,例如 22nm 的,短沟道效应开始 变得更明显,降低了器件的性能。为了克服这个问题,FinFET 就此横空出世。FinFET 结构 结构提供了改进的电气控制的通道传导,能降低漏电流并克服一些短沟道效应。目前先进制 程都是采用 FinFET 结构。
制程提升,需要更精细的芯片,光刻机性能持续提升。 负责“雕刻”电路图案的核心制造设备是光刻机,它是芯片制造阶段最核心的设备之一,光刻机的精度决定了制程的精度。第四 代深紫外光刻机分为步进扫描投影光刻机和浸没式步进扫描投影光刻机,其中前者能实现最 小 130-65nm 工艺节点芯片的生产,后者能实现最小 45-22nm 工艺节点芯片的生产。通过多 次曝光刻蚀,浸没式步进扫描投影光刻机能实现 22/16/14/10nm 芯片制作。到了 7/5nm 工艺, DUV 光刻机已经较难实现生产,需要更为先进的 EUV 光刻机。EUV 生产难度极大,零部件 高达 10 万多个,全球仅 ASML 一家具备生产能力。目前 EUV 光刻机产量有限而且价格昂 贵,2019 年全年,ASML EUV 销量仅为 26 台,单台 EUV 售价高达 1.2 亿美元。
晶圆代工技术迭代快,利于头部代工厂。 芯片制程进入 90nm 节点以后,技术迭代变快,新的制程 几乎每两到三年就会出现。先进制程不但需要持续的研发投入,也需要持续的巨额资本性支出,而 且新投入的设备折旧很快,以台积电为例,新设备折旧年限为 5 年,5 年以后设备折旧完成,生产 成本会大幅度下降,头部厂商完成折旧以后会迅速降低代工价格,后进入者难以盈利。
2.1摩尔定律延续,技术难度与资本投入显著提升
追寻摩尔定律能让消费者享受更便宜的 算 力,晶圆代工是推动摩尔定律最重要的环节。 1965 年, 英特尔(Intel)创始人之一戈登·摩尔提出,当价格不变时,集成电路上可容纳的元器件的数目, 约每隔 18-24 个月便会增加一倍,性能也将提升一倍,这也是全球电子产品整体性能不断进化的核 心驱动力,以上定律就是著名的摩尔定律。换而言之,每一美元所能买到的电脑性能,将每隔 18- 24 个月翻一倍以上。推动摩尔定律的核心内容是发展更先进的制程,而晶圆代工是其中最重要的 环节。
摩尔定律仍在延续。 市场上一直有关于摩尔定律失效的顾虑,但是随着 45nm、28nm、10nm 持续 的推出,摩尔定律仍然保持着延续。台积电在 2018 年推出 7nm 先进工艺,2020 年开始量产 5nm, 并持续推进 3nm 的研究,预计 2022 年量产 3nm 工艺。IMEC 更是规划到了 1nm 的节点。此外, 美国国防高级研究计划局进一步提出了先进封装、存算一体、软件定义硬件处理器三个未来发展研 究与发展方向,以此来超越摩尔定律。在现在的时间点上来看,摩尔定律仍然在维持,但进一步提 升推动摩尔定律难度会显著提升。
先进制程资本性投入进一步飙升 。根据 IBS 的统计,先进制程资本性支出会显著提升。以 5nm 节 点为例,其投资成本高达数百亿美金,是 14nm 的两倍,是 28nm 的四倍。为了建设 5nm 产线, 2020 年,台积电计划全年资本性将达到 150-160 亿美元。先进制程不仅需要巨额的建设成本,而 且也提高了设计企业的门槛,根据 IBS 的预测,3nm 设计成本将会高达 5-15 亿美元。
3nm 及以下制程需要采用全新的晶体管工艺。 FinFET 已经历 16nm/14nm 和 10nm/7nm 两个工艺 世代,随着深宽比不断拉高,FinFET 逼近物理极限,为了制造出密度更高的芯片,环绕式栅极晶 体管(GAAFET,Gate-All-Ground FET)成为新的技术选择。不同于 FinFET,GAAFET 的沟道被 栅极四面包围,沟道电流比三面包裹的 FinFET 更加顺畅,能进一步改善对电流的控制,从而优化 栅极长度的微缩。三星、台积电、英特尔均引入 GAA 技术的研究,其中三星已经先一步将 GAA 用 于 3nm 芯片。如果制程到了 2nm 甚至 1nm 时,GAA 结构也许也会失效,需要更为先进的 2 维 、 甚至 3 维立体结构,目前微电子研究中心(Imec)正在开发面向 2nm 的 forksheet FET 结构。
3nm 及以下制程,光刻机也需要升级。 面向 3nm 及更先进的工艺,芯片制造商或将需要一种称为 高数值孔径 EUV(high-NA EUV)的光刻新技术。根据 ASML 年报,公司正在研发的下一代极紫 外光刻机将采用 high-NA 技术,有更高的数值孔径、分辨率和覆盖能力,较当前的 EUV 光刻机将 提高 70%。ASML 预测高数值孔径 EUV 将在 2022 年以后量产。
除上面提到巨额资本与技术难题以外,先进制程对沉积与刻蚀、检测、封装等环节也均有更高的要 求。正是因为面临巨大的资本和技术挑战,目前全球仅有台积电、三星、intel 在进一步追求摩尔定 律,中芯国际在持续追赶,而像联电、格罗方德等晶圆代工厂商已经放弃了 10nm 及以下制程工艺 的研发,全面转向特色工艺的研究与开发。先进制程的进一步推荐节奏将会放缓,为中芯国际追赶 创造了机会。
2.2先进制程占比持续提升,成熟工艺市场不断增长
高性能芯片需求旺盛,先进制程占比有望持续提升。 移动终端产品、高性能计算、 汽车 电子和通信 及物联网应用对算力的要求不断提升,要求更为先进的芯片,同时随着数据处理量的增加,存储芯 片的制程也在不断升级,先进制程的芯片占比有望持续提升。根据 ASML2018 年底的预测,到 2025 年,12 寸晶圆的先进制程占比有望达到 2/3。2019 年中,台积电 16nm 以上和以下制程分别占比 50%,根据公司预计,到 2020 年,16nm 及以下制程有望达到 55%。
CPU、逻辑 IC、存储器等一般采用先进制程(12 英寸),而功率分立器件、MEMS、模拟、CIS、 射频、电源芯片等产品(从 6μm 到 40nm 不等)则更多的采用成熟工艺(8 寸片)。 汽车 、移动 终端及可穿戴设备中超过 70%的芯片是在不大于 8 英寸的晶圆上制作完成。相比 12 寸晶圆产线,8 寸晶圆制造厂具备达到成本效益生产量要求较低的优势,因此 8 寸晶圆和 12 寸晶圆能够实现优 势互补、长期共存。
受益于物联网、 汽车 电子的快速发展,MCU、电源管理 IC、MOSFET、ToF、传感器 IC、射频芯 片等需求持续快速增长。 社会 已经从移动互联网时代进入了物联网时代,移动互联网时代联网设备 主要是以手机为主,联网设备数量级在 40 亿左右,物联网时代,设备联网数量将会成倍增加,高 通预计到 2020 年联网 设备数量有望达到 250 亿以上。飙升的物联网设备需要需要大量的成熟工艺 制程的芯片。以电源管理芯片为例,根据台积电年报数据,公司高压及电源管理晶片出货量从 2014 年的 1800 万片(8 寸)增长到 2019 年的 2900 万片,CAGR 为 10%。根据 IHS 的预测,成熟晶 圆代工市场规模有望从 2020 年的 372 亿美元增长到 2025 年的 415 亿美元。
特色工艺前景依旧广阔,主要代工厂积极布局特色工艺。 巨大的物联网市场前景,吸引了众多 IC 设计公司开发新产品。晶圆代工企业也瞄准了物联网的巨大商机,频频推出新技术,配合设计公司 更快、更好地推出新一代芯片,助力物联网产业高速发展。台积电和三星不仅在先进工艺方面领先布局,在特色工艺方面也深入布局,例如台积电在图像传感器领域、三星在存储芯片领域都深入布 局。联电、格罗方德、中芯国际、华虹半导体等代工厂也全面布局各自的特色工艺,在射频、 汽车 电子、IOT 等领域,形成了各自的特色。
5G 时代终端应用数据量爆炸式提升增加了对半导体芯片的需求,晶圆代工赛道持续繁荣。 随着对 于 5G 通信网络的建设不断推进,不仅带动数据量的爆炸式提升,要求芯片对数据的采集、处理、 存 储 效率更高,而且也催生了诸多 4G 时代难以实现的终端应用,如物联网、车联网等,增加了终 端对芯片的需求范围。对于芯片需求的增长将使得下游的晶圆代工赛道收益,未来市场前景极其广 阔。根据 IHS 预测,晶圆代工市场规模有望从 2020 年的 584 亿美元,增长到 2025 年的 857 亿美 元,CAGR 为 8%。
3.15G 推动手机芯片需求量上涨
5G 手机渗透率快速提升。手机已经进入存量时代,主要以换机为主。2019 年全球智能手机出货量 为 13.7 亿部,2020 年受疫情影响,IDC 等预测手机总体出货量为 12.5 亿台,后续随着疫情的恢 复以及 5G 产业链的成熟,5G 手机有望快速渗透并带动整个手机出货。根据 IDC 等机构预测,5G 手机出货量有望从 2020 年的 1.83 增长到 2024 年的 11.63 亿台,CAGR 为 59%。
5G 手机 SOC、存储和图像传感器全面升级,晶圆代工行业充分受益。 消费者对手机的要求越来越 高,需要更清晰的拍照功能、更好的 游戏 体验、多任务处理等等,因此手机 SOC 性能、存储性能、 图像传感器性能全面提升。目前旗舰机的芯片都已经达到了 7nm 制程,随着台积电下半年 5 nm 产 能的释放,手机 SOC 有望进入 5nm 时代。照片精度的提高,王者荣耀、吃鸡等大型手游和 VLOG 视频等内容的盛行,对手机闪存容量和速度也提出了更高的要求,LPDDR5 在 2020 年初已经正式 亮相小米 10 系列和三星 S20 系列,相较于上一代的 LPDDR4,新的 LPDDR5 标准将其 I/O 速 度从 3200MT/s 提升到 6400MT/s,理论上每秒可以传输 51.2GB 的数据。相机创新是消费者更 换新机的主要动力之一,近些年来相机创新一直在快速迭代,一方面,多摄弥补了单一相机功能不 足的缺点,另一方面,主摄像素提升带给消费者更多的高清瞬间,这两个方向的创新对晶圆及代工 的需求都显著提升。5G 时代,手机芯片晶圆代工市场将会迎来量价齐升。
5G 手机信号频段增加,射频前端芯片市场有望持续快速增长。射频前端担任信号的收发工作,包 括低噪放大器、功率放大器、滤波器、双工器、开关等。相较于 4G 频段,5G 的频段增加了中高 频的 Sub-6 频段,以及未来的更高频的毫米波频段。根据 yole 预测,射频前端市场有望从 2018 年 的 149 亿美元,增长到 2023 年的 313 亿美元,CAGR 为 16%。
3.2云计算前景广阔,服务器有望迎来快速增长
2020 年是国内 5G 大规模落地元年,有望带来更多数据流量需求 。据中国信通院在 2019 年 12 月 份发布的报告,2020 年中国 5G 用户将从去年的 446 万增长到 1 亿人,到 2024 年我国 5G 用户 渗透率将达到 45%,人数将超过 7.7 亿人,全球将达到 12 亿人,5G 用户数的高增长带来流量的 更高增长。
5G 时代来临,云计算产业前景广阔。 进入 5G 时代,IoT 设备数量将快速增加,同时应用的在线 使用需求和访问流量将快速爆发,这将进一步推动云计算产业规模的增长。根据前瞻产业研究院的 报告,2018 年中国云计算产业规模达到了 963 亿元,到 2024 年有望增长到 4445 亿元,CAGR 为 29%,产业前景广阔。
边缘计算是云计算的重要补充,迎来新一轮发展高潮。 根据赛迪顾问的数据,2018 年全球边缘计 算市场规模达到 51.4 亿美元,同比增长率 57.7%,预计未来年均复合增长率将超过 50%。而中国 边缘计算市场规模在 2018 年达到了 77.4 亿元,并且 2018-2021 将保持 61%的年复合增长率,到 2021 年达到 325.3 亿元。
服务器大成长周期确定性强。 服务器短期拐点已现,受益在线办公和在线教育需求旺盛,2020 年 服务器需求有望维持快速增长。长期来看,受益于 5G、云计算、边缘计算强劲需求,服务器销量 有望保持持续高增长。根据 IDC 预测,2024 年全球服务器销量有望达到 1938 万台,19-24 年, CAGR 为 13%。
服务器半导体需求持续有望迎来快速增长,晶圆代工充分受益。 随着服务器数量和性能的提升,服 务器逻辑芯片、存储芯片对晶圆的需求有望快速增长,根据 Sumco 的预测,服务器对 12 寸晶圆 需求有望从 2019 年的 80 万片/月,增长到 2024 年的 158 万片/月,19-24 年 CAGR 为 8%。晶圆 代工市场有望充分受益服务器芯片量价齐升。
3.3三大趋势推动 汽车 半导体价值量提升
传统内燃机主要价值量主要集中在其动力系统。 而随着人们对于 汽车 出行便捷性、信息化的要求逐 渐提高, 汽车 逐步走向电动化、智能化、网联化,这将促使微处理器、存储器、功率器件、传感器、 车载摄像头、雷达等更为广泛的用于 汽车 发动机控制、底盘控制、电池控制、车身控制、导航及车 载 娱乐 系统中, 汽车 半导体产品的用量显著增加。
车用半导体有望迎来加速增长。 根据 IHS 的报告,车用半导体销售额 2019 年为 410 亿美元,13- 19 年 CAGR 为 8%。随着 汽车 加速电动化、智能化、网联化,车用芯片市场规模有望迎来加速, 根据 Gartner 的数据,全球 汽车 半导体市场 2019 年销售规模达 410.13 亿美元,预计 2022 年有望 达到 651 亿美元,占全球半导体市场规模的比例有望达到 12%,并成为半导体下游应用领域中增 速最快的部分。
自动驾驶芯片要求高,有望进一步拉动先进制程需求。 自动驾驶是通过雷达、摄像头等将采集车辆 周边的信息,然后通过自动驾驶芯片处理数据并给出反馈,以此降低交通事故的发生率、提高城市 中的运载效率并降低驾驶员的驾驶强度。自动驾驶要求多传感器之间能够及时、高效地传递信息, 并同时完成路线规划和决策,因此需要完成大量的数据运算和处理工作。随着自动驾驶级别的上升, 对于芯片算力的要求也越高,产生的半导体需求和价值量也随之水涨船高。英伟达自动驾驶芯片随 着自动驾驶级别的提升,芯片制程也显著提升,最早 Drive PX 采用的是 20nm 工艺,而最新 2019 年发布的 Drive AGX Orin 将会采用三星 8nm 工艺。根据英飞凌的预测,自动驾驶给 汽车 所需要的 半导体价值带来相当可观的增量,一辆车如果实现 Level2 自动驾驶,半导体价值增量就将达到 160 美元,若自动驾驶级别达到 level4&5,增量将会达到 970 美元。
3.4IoT 快速增长,芯片类型多
随着行业标准完善、技术不断进步、政策的扶持,全球物联网市场有望迎来爆发性增长。GSMA 预 测,中国 IOT 设备联网数将会从 2019 年的 36 亿台, 增到 到 2025 年的 80 亿台,19-25 年 CAGR 为 17.3%。根据全球第二大市场研究机构 MarketsandMarkets 的报告,2018 年全球 IoT 市场规模 为 795 亿美元,预计到 2023 年将增长到 2196 亿美元,18-23 年 CAGR 为 22.5%。
物联网的发展需要大量芯片支撑,半导体市场规模有望迎来进一步增长 。物联网感知层的核心部件 是传感器系统,产品需要从现实世界中采集图像、温度、声音等多种信息,以实现对于所处场景的 智能分析。感知需要向设备中植入大量的 MEMS 芯片,例如麦克风、陀螺仪、加速度计等;设备 互通互联需要大量的通信芯片,包括蓝牙、WIFI、蜂窝网等;物联网时代终端数量和数据传输通道 数量大幅增加,安全性成为最重要的需求之一,为了避免产品受到恶意攻击,需要各种类型的安全 芯片作支持;同时,身份识别能够保障信息不被盗用,催生了对于虹膜识别和指纹识别芯片的需求; 作为物联网终端的总控制点,MCU 芯片更是至关重要,根据 IC Insights 的预测,2018 年 MCU 市 场规模增长 11%,预计未来四年内 CAGR 达 7.2%,到 2022 年将超过 240 亿美元。
4.1 国内 IC 设计企业快速增长,代工需求进一步放量
国内集成电路需求旺盛,有望持续维持快速增长。 国内集成电路市场需求旺盛,从 2013 年的 820 亿美元快速增长到 2018 年的 1550 亿美元,CAGR 为 13.6%,IC insight 预测,到 2023 年,中国 集成电路市场需求有望达到 2290 亿美元,CAGR 为 8%。但是同时,国内集成电路自给率也严重 不足,2018 年仅为 15%,IC insight 在 2019 年预测,到 2023 年,国内集成电路自给率为 20%。
需求驱动,国内 IC 设计快速成长。 在市场巨大的需求驱动下,国内 IC 设计企业数量快速增加,尤 其近几年,在国内政策的鼓励下,以及中美贸易摩擦大的背景下,IC 设计企业数量加速增加,2019 年底,国内 IC 设计企业数量已经达到了 1780 家,2010-2019 年,CAGR 为 13%。根据中芯国际 的数据,国内 IC 设计公司营收 2020 年有望达到 480 亿美元,2011-2020 年 CAGR 为 24%,远 高于同期国际 4%的复合增长率。
国内已逐步形成头部 IC 设计企业。 根据中国半导体行业协会的统计,2019 年营收前十的入围门槛 从 30 亿元大幅上升到 48 亿元,这十大企业的增速也同样十分惊人,达到 47%。国内 IC 企业逐步 做大做强,部分领域已经形成了一些头部企业:手机 SoC 芯片领域有华为海思、中兴微电子深度 布局;图像传感领域韦尔豪威大放异彩;汇顶 科技 于 2019 年引爆了光学屏下指纹市场;卓胜微、 澜起 科技 分别在射频开关和内存接口领域取得全球领先。IC 设计企业快速成长有望保持对晶圆代 工的强劲需求。
晶圆代工自给率不足。 中国是全球最大的半导体需求市场,根据中芯国际的预测,2020 年中国对 半导体产品的需求为 2130 亿美元,占全球总市场份额为 49%,但是与之相比的是晶圆代工市场份 额严重不足,根据拓墣研究的数据,2020Q2,中芯国际和华虹半导体份额加起来才 6%,晶圆代 工自给率严重不足,尤其考虑到中国 IC 设计企业数量快速增长,未来的需求有望持续增长,而且, 美国对华为等企业的禁令,更是让我们意识到了提升本土晶圆代工技术和产能的重要性。
4.2政策与融资支持,中国晶圆代工企业迎来良机(略)
晶圆代工需求不断增长,但国内自给严重不足,受益需求与国内政策双重驱动,国内晶圆代工迎来 良机。建议关注:国内晶圆代工龙头,突破先进制程瓶颈的中芯国际-U、特色化晶 圆代工与功率半导体 IDM 双翼发展的华润微华润微、坚持特色工艺,盈利能力强的华虹半导体华虹半导体。
……
(报告观点属于原作者,仅供参考。作者:东方证券,蒯剑、马天翼)
如需完整报告请登录【未来智库】www.vzkoo.com。
IGBT长文
功率半导体行业情况
预测2025年国内功率半导体500亿市场,目前国产化渗透率很低。预测未来整个功率三大块: 汽车 、光伏、工控 。还有一些白电、高压电网、轨交。
(1)工控市场: 国内功率半导体2018年以前主要还是集中工控领域,国内规模100亿;
(2)车载新能源车市场: 2025年预测电动车国内市场达到100-150亿以上;2019-2020年新能源 汽车 销量没怎么涨,但是2020年10月开始又开始增长 ,一辆车功率半导体价值量3000元,预测2021年国内200万辆(60亿市场空间),2025年国内目标达到500万台(150亿市场空间)。
(3)光伏逆变器市场: 从130GW涨到去年180GW。光伏逆变器也是迅速发展,1GW对应用功率半导体产业额4000万元人民币,所以, 光伏这块2020年180GW也有70多亿功率半导体产业额。国内光伏逆变器厂商占到全球60%市场份额(固德威、阳光电源、锦浪、华为等)。
Q:功率半导体景气情况
A:今年的IGBT功率半导体涨价来自于:(1)新能源车和光伏市场对IGBT的需求快速增长;(2)疫情影响,IGBT目前大部分仰赖进口,而且很多封测都在东南亚(马来西亚等),目前处于停摆阶段,加剧缺货状态。(3)现在英飞凌工控IGBT交期半年、 汽车 IGBT交期一年。 2022-2023年后疫情缓解了工厂复工,英飞凌交期可能会缓解;但是,对IGBT模组来说, 汽车 和光伏市场成长很快,缺货可能会一直持续下去。 直到英飞凌12英寸,还有国内几条12英寸(士兰微、华虹、积塔、华润微等)产线投出来才有可能缓解。
Q:新能源车IGBT市场和国内主要企业优劣势?
A: 第一比亚迪, 国内最早开始做的;
(1) 2008年收购了宁波中玮的IDM晶圆厂开始自己做,2010-2011年组织团队开始开发车载IGBT;2012年导入自家比亚迪车,2015年自研的IGBT开始上量。
(2)2015年以前,比亚迪80%芯片都是外购英飞凌的,然后封装用在自己的车上,比如唐、宋等;
(3)2015年之后自产的IGBT 2.5代芯片出来,80%芯片开始用自己,20%外购;
(4)2017-2018年IGBT 4.0代芯片出来以后,基本100%用自己的芯片。 他现在IGBT装车量累计最多,累计100万台用自己的芯片,2017年开始往外推广自己的芯片和模块, 但是,比亚迪IGBT 4.0只能对标英飞凌IGBT 2.5为平面型+FS结构,比国内企业沟槽型的芯片性能还差一些 (对比斯达、宏微、士兰微的4代都落后一代;导致饱和压降差2V,沟槽型的薄和压降差1.4V,所以平面结构的损耗大,最终影响输出功率效率)。所以, 目前外部采用比亚迪IGBT量产的客户只有深圳的蓝海华腾,做商用物流车 ;乘用车其他厂商没用一个是性能比较落后,另一个是比亚迪自研的模块是定制化封装,比目前标准化封装A71、A72等模块不一样;
(5)2020年底比亚迪最新的IGBT 5.0推出来 ,能对标国内同行沟槽型的芯片(对标英飞凌4.0代IGBT,还有斯达、士兰微的沟槽型产品),就看他今年推广新产品能不能取得进展了。
第二斯达半导: (1)2008年开始做IGBT,原本也是外购芯片,自己做封装;
(2)2015年英飞凌收购了IR(international rectifier),把IR原本芯片团队解散了,斯达把这个团队接手过来,在IR第7代芯片(对标英飞凌第4代)基础上迭代开发;
(3)2016年开始推广自己研发的芯片,客户如汇川、英威腾进行推广。这款是在别人基础上开发的,走了捷径,所以一次成功,迅速在国内主机厂进行推广;
(4)2017年开始用在电控、整车厂;
(5)斯达现在厂内自研的芯片占比70%,但是在车规上A00级、大巴、物流车这些应用比较多 。但是他的750V那款A级车模块还没有到车规级,寿命仅有4-5年(要求10年以上),失效率也没有达标(年失效率50ppm的等级); A级车的整车厂对车载IGBT模块导入更倾向于IDM,因为对芯片寿命、可靠性、失效率要求高,IDM在Fab厂端对工艺、参数自己把控。斯达的芯片是Fabless,没法证明自己的芯片来料是车规级;(虽然最终模块出厂是车规级,但是芯片来料不能保证)
Fabless做车规级的限制: 斯达给华虹下单,是晶圆出来以后,芯片还有经过多轮筛选,经过测试还有质量筛选,然后再拿去封装,封装完以后在拿去老化测试,动态负载测试等,最后才会出给整机客户;但是,IDM模式在Fab厂那端就可以做到很多质量控制,把参数做到一致,就可以让芯片达到车规等级,出来以后不需要经过很多轮的筛选;
第三中车电气:(1) 2012年收购英国的丹尼克斯,开始进行IGBT开发。
(2)2015年成立Fab厂,一开始开发应用于轨交的IGBT高压模块6500V/7500V。2017年因为在验证所以产能比较闲置,所以开始做车规级的IGBT模块650V/750V/1200V的产品;
(3)2018年国产开始有机会导入大巴车、物流车、A00级别的模块(当时国内主要是中车、比亚迪、斯达三家导入,中车的报价是里面最低的;但是受限于中车原来不是做工控产品,所以对于车规IGBT的应用功放,还有加速功放理解不深;例如:IGBT要和FRD并联使用,斯达和比亚迪是IGBT芯片和FRD芯片面积都是1:1使用,中车当时不太了解,却是用1:0.5,在特殊工况下,二极管电流会很大,失效导致炸机,所以当时中车第一版的模块推广不是很顺利。
2019-2021年中车进行芯片改版,以及和Tier-1客户紧密合作,目前汇川、小鹏、理想都对中车进行了两年的质量验证,今年公司IGBT有机会上乘用车放量。 我们觉得中车目前的产品质量达到车规要求,比斯达、比亚迪都好;中车的Fab厂和封装厂也达到车规等级,今年中车上量以后还要看他的失效率。如果今年数据OK的话,后面中车有机会占据更大份额。
第四士兰微:(1) 2018年之前主要做白电产品;
(2)2018年以后成立工业和车载IGBT。四家里面士兰微是最晚开始做的;
(3)目前为止,士兰微 车载IGBT有些样品出来,而且有些A00级别客户已经开始采用了,零跑、菱电采用了士兰微模块 。士兰微要走的路线是中车、斯达的路径,先从物流、大巴、A00级进入。 士兰微虽然起步慢,但是优势是在于IDM,自有6、8、12英寸产线产品迭代非常块(迭代一版产品只要3个月,Fabless要6个月)。 工业领域方面,士兰未来是斯达最大的竞争对手,车载这块主要看他从A00级车切入A级车的情况。
Q:国内几家厂商车规芯片参数差异?
A:比亚迪IGBT的4.0平面型饱和压降在2V以上,但是斯达、士兰微、中车的沟槽型工艺能做到1.4V-1.6V,平面损耗大,最终影响输出功率差;
如果以A级车750V模块为例,士兰微是目前国内做最好的,能对标英飞凌输出160KW-180KW, 然后是中车,也能做到160KW但是到不了180KW,斯达半导产品出来比较早做到140-150kW的功率,比亚迪用平面型工艺最高智能做到140kW,所以最后会体现在输出功率;
比亚迪芯片工艺落后的原因:收购宁波中玮的厂是台积电的二手厂,这条线只能做6英寸平面型工艺,做不了沟槽的工艺;所以比亚迪新一代的5.0沟槽工艺的芯片是在华虹代工的 (包括6.0对标英飞凌7代的芯片估计也是找带动)。
Q:国内几家厂商封装工艺的差异?
A:车规封装有四代产品:
(1)第一代是单面间接水冷: 模块采用铜底板,模块下面涂一层导热硅脂,打在散热器底板上,散热器下面再通水流,因此模块不直接跟水接触。这种模块主要用在经济型方案,如A00、物流车等;这个封装模块国内厂商比亚迪、斯达、宏微等都可以量产,从工业级封装转过来没什么技术难度。
(2)第二代是单面直接水冷: 会在底板上长散热齿(Pin Fin结构),在散热器上开一个槽,把模块插进去,下面直接通水,跟水直接接触,周围封住,散热效率和功率密度会比上一代提升30%以上;这种模块主要用在A00和A级车以上,乘用车主要用这种方案。国内也是大家都可以量产,细微区别在于斯达、中车用的铜底板,比亚迪用的铝硅钛底板,比亚迪这个底板更可靠,但是散热没有铜好。他是讲究可靠性,牺牲了一些性能。
(3)第三代是双面散热: 模块从灌胶工艺转为塑封工艺,两面都是间接水冷,散热跟抽屉一样把模块插进去;这种模块最早是日系Denso做得(给丰田普锐斯),国内华为塞力斯做的车,也是采用这个双面水冷散热的方案。国外安森美、英飞凌、电桩都是这个方案,国内是比亚迪(2016年开始做)和斯达在做,但是对工艺要求比较高(散热器模块封装工艺比较复杂,芯片需要特殊要求,要求芯片两面都能焊,所以芯片上表面还需要电镀),国内比亚迪、斯达距离量产还有一段距离(一年左右);
(4)第四代是双面直接水冷: 两面铜底加上长pinfin双面散热,目前全球只有日本的日立可以量产,给奥迪etron、雷克萨斯等高端车型在供应,国内这块没有量产,还处于技术开发阶段。
Q:国内企业现在还有外采英飞凌的芯片吗,国内这四家距离英飞凌的代差
A:目前斯达、宏微、比亚迪还是有部分产品外采英飞凌的芯片;斯达外采的芯片主要是做一些工业级别IGBT产品,例如:在电梯、起重机、工业冶金行业,客户会指定要求模块可以国产,但是里面芯片必须要进口(例如:汇川的客户蒂森克虏伯,德国电梯公司);还有一些特殊工业冶炼,这些芯片频率很高,国内还做不到,就需要外采芯片;
车载外采英飞凌再自己做封装的话,价格拼不过英飞凌;(英飞凌第七代芯片不卖给国内器件厂,只卖四代);国内来讲, 斯达、士兰微、中车等,不管他们自己宣传第几代,实际上都是对标英飞凌第四代 (沟槽+FS的结构),目前英飞凌最新做到第七代,英飞凌第五代(大功率版第四代)、第六代(高频版第四代)第五和第六代是挤牙膏基于第四代的升级迭代,没有质量飞跃;第七代相对第四代是线径减少(5微米缩小到3微米,减小20%面积),芯片减薄(从120微米减少到80微米,导通压降会更好),性能更好(1200V产品的导通压降从1.7V降到1.4V)。而且,英飞凌第七代IGBT是在12寸上做,单颗面积减小,成本可能是第四代的一半。但是,英飞凌在国内销售策略,第七代售价跟第四代差不多,保持大客户年降5%(但是第七代性能比第四代有优势);国内士兰微、中车、斯达能够量产的都是英飞凌四代、比亚迪4.0对标英飞凌2.5代,5.0对标英飞凌4代;
2018年底,英飞凌推出7代以后因为性能很好,国内士兰微、斯达、宏微当时就朝着第七代产品开发,目前士兰微、斯达有第七代样品出来了,但是离量产有些距离。第七代IGBT的关键设备是离子注入机等,这个设备受到进口限制,目前就国内的华虹、士兰微和积塔半导体有。 士兰微除了英飞凌第七代,还走另一条路子,Follow日本的富士,走RC IGBT(把IGBT和二极管集成到一颗IC用在车上),还没有量产。
Q:斯达IGBT跟华虹的关系和进展如何?
A:斯达跟华虹一直都是又吵又合作。2018年英飞凌缺货的时候,对斯达来讲是个非常好的国产替代机会,斯达采取策略切断小客户专供大客户,在汇川起量(紧急物料快速到货),在汇川那边去年做到2个亿,今年可能做到3个亿;缺货涨价对国产化是很好的机会,但是,华虹当时对斯达做了个不好的事情,当年涨了三次价格,一片wafer从2800涨到3500,所以,2019年斯达后面找海内外的代工厂,包括中芯绍兴、日本的Fab等。所以斯达和华虹都是相爱相杀的状态。
斯达自己规划IDM做的产品,是1700V高压IGBT和SiC的芯片,这块业务在华虹是没有量产的新产品,华虹那边的业务量不会受到影响(12英寸针对斯达1200V以下IGBT)。 但是,从整个功率半导体模式来说,大家都想往IDM转,第一个是实现成本控制提高毛利率,扩大份额。第二个是产品工艺能力,斯达往A级车推广不利,主要就是因为受限于Fabless模式,追求质量和可靠性,未来还是要走IDM模式。
Q:士兰微、斯达半导体的12寸IGBT的下游应用有区别吗?
A: 目前国内12英寸主要是让厂家成本降低,但是做得产品其实一样。 12寸晶圆工艺更难控制,晶圆翘曲更大,更容易裂片,尤其是减薄以后的离子注入,工艺更难控制。 士兰微、斯达在12寸做IGBT,主要还是对标英飞凌第四代产品,厚度120微米。如果做到对标英飞凌的第七代,要减薄到80微米,更容易翘曲和裂开。 士兰微、斯达12寸IGBT产品主要用在工业场景,英飞凌12英寸在2016、2017年出来,首先切入工业产线,后面再慢慢切入车规,因为车规变更产线所有车规等级需要重新认证。
Q:电动车里面IGBT的价值量?
A:电控是电动车里面IGBT价值量最大头;
(1)物流车: 用第一代封装技术,一般使用1200V 450A模块,属于半桥模块,单个模块价格300元(中车报价280),一辆车电控系统要用三个,单车价值量1000元;
(2)大巴车: 目前用物流车一样的封装方案(第一代);但是不同等级大巴功率也不一样,8米大巴用1200V 600A;大巴一般是四驱,前后各有一个电控,一个电控用3个模块,总共要用6个模块,单个价格450-500,单车价值量3000元左右;10米大巴功率等级更高用1200V 800A,一个模块600块,也用6个,单车价值量3600元左右。
(3)A00级(小车): 用80KW以下,使用第二代封装(HP1模块),模块英飞凌900左右(斯达报价600)。
(4)A级车以上: 15万左右车型用单电控方案,用第二代直接水冷的HP Drive模块,英飞凌报价从2000-1300元(斯达1000元);20-30万一般是四驱,前后各有一个电机,进口2600(国产2000);高级车型:蔚来ES8(硅基电控单个160-180KW,后驱需要240KW),前驱一个,后驱并联用两个模块;所以共需要三个,合计3000-3900元。
(5)车上OBC: 6.6kW慢充用IGBT单管,20多颗分立器件,总体成本300元以下;
(6)车载空调: 4kW左右用IPM第一类封装,价值量100元以内;
(7)电子助力转向, 功率在15-20kW,主要用的75A模块,价值量200元以内;
(8)充电桩 :慢充20kW以内用半桥工业IGBT,200元以内。未来的话要做到超级快充100KW以上,越大功率去做会采用SiC方案,成本成倍增加,可能到1000元以上;
Q:国内SiC主要企业优劣势?
A:国内SiC产业链不完整。做晶圆这块国内能够量产的是碳化硅二极管, SiC二极管已经量产的是三安光电、瑞能、泰科天润。 士兰和华润目前的进度还没有量产(还在建设产线);
SiC MOS的IDM模式要等更久,相对更快的反而是Fabless企业, 瞻芯、瀚薪等fabless,找台湾的汉磊代工,开始有些碳化硅MOS在OBC和电源上面量产了, 主要因为国内Fab厂商不成熟(栅氧化层、芯片减薄还不成熟),相对海外厂商工艺更好,国内落后三年以上。海外的罗姆已经在做沟槽型SiC MOS的第三代了,ST的SiC都在特斯拉车上量产了;
SiC应用来讲,整个全球市场6-7亿美金,成本太高所以应用行业主要分两个:
第一个、是高频高效的场景,如光伏、高端通信电源, 采用SiC二极管而不是SiC MOSFET,可以降低成本; 把跟IGBT并联的硅基二极管换成SiC二极管,可以提升效率兼顾成本;
第二块、就是车载, (1)OBC强调充电效率(超过12KW、22KW)的高端车型,已经开始批量采用SiC MOSFET,因为碳化硅充电效率比较高,充电快又剩电;(2)车载主驱逆变的话主要用在高端车型,保时捷Taycan、蔚来ET7,效率比较高可以提升续航,功率密度比较高;20-30万中段车型主要是 Tesla model 3 和比亚迪汉在用SiC MOS模块,因为特斯拉、比亚迪是垂直一体化的整车厂(做电控、做电池、又做整车),所以可以清楚知道效能提升的幅度;
相对来说,其他车企是分工的,模块厂也讲不清楚用了SiC的收益具体有多少(如节省电池成本),而且IGBT模块的价格也在降低成本。 虽然SiC可以提高续航,但是SiC节省温高的优点还没发挥,节省温高可以把散热系统做小,优势才会提升。 目前特斯拉SiC模块成本在5000元,是国产硅基IGBT的1300-1500元5-8倍区间,所以国产车企还在观望;但是,预计到2023年SiC成本有希望缩减到硅基IGBT的3倍差距,整车厂看到更多收益以后才会推动去用SiC。
Q:比亚迪的SiC采购谁的
A:比亚迪采购Cree模块; 英飞凌主要是推动IGBT7,没有积极推SiC;因为推SiC会革自己硅基产品的命。目前积极推广碳化硅的是罗姆、科瑞(全球衬底占比80%-90%);
Q:工控、光伏领域里面,国产IGBT厂商的进展
A:以汇川为例,会要求至少两家供应商,工控里面一个用斯达,另一个宏微(汇川是宏微股东);目前上量比较多的就是斯达; (1)斯达 的IGBT去年2个亿,今年采用规模可能达3亿以上(整个IGBT采购额约15亿); (2)宏微 的IGBT芯片和封装在厂内出现过重大事故,质量问题比较大,导致量上不去,去年3000-4000万;伺服方面去年缺货,小功率IPM引入了士兰微, (3)士兰微随着小批量上量,后面工控模块也有机会对士兰微进行质量验证;
Q:汇川使用士兰微的情况怎么样?
A: 目前还是可以的,去年口罩机上量,用了士兰微的IPM模块,以前用ST的IPM模块。目前,士兰微的失效率保持3/1000以内,后面考虑对士兰微模块产品上量(因为我们模块采购额一直在提升,只有两个国产企业供应不来)。 汇川内部有零部件的国产化率目标,工业产品设定2022年达到60%的国产化率,英威腾定的2022年80%,所以国产功率企业还是有很大空间去做。
Q:汇川给士兰微的体量
A:如果对标国产化率目标, 今年采购15亿,60%国产化率就是9个亿的产品国产化,2-3家份额分一下。(可能斯达4个亿;宏微、士兰微各自2-3个亿;) 具体看他们做得水平
Q:SiC二极管在光伏采用情况?
A:光伏里面也有IGBT模块,IGBT会并联二极管,现在是用SiC二极管替代IGBT里面的硅基FRD,SiC可以大幅减少开关损耗,提升光伏逆变器的效率。所以换成SiC二极管可以少量成本增加,换取大量效益; 国产SiC二极管主要用在通信站点、大型UPS里面;目前在光伏里面的IGBT模块还是海外垄断,所以里面的SiC二极管还是海外为主, 未来如果斯达、宏微开发碳化硅模块,也会考虑国产化的。
Q:华润微、新洁能、扬杰、捷捷这些的IGBT实力?
A:这里面比较领先的是华润微;(1)华润微在2018年左右开始做IGBT,今年有1、2个亿左右收入主要是单管产品,应该还没有模块;(2)新洁能是纯Fabless,没有自己的Fab和模块工厂,要做到工业和车规比较难(汇川不会考虑导入),可能就是做消费级或是白电这种应用。(3)捷捷、扬杰有些SiC二极管样品,实际没多少销售额,IGBT产品市场上还看不太到,主要用在相对低端的工控,像焊机,高端工业类应用看不到;比亚迪其实也是,工业也主要在焊机、电磁炉,往高端工业走还是需要个积累过程。
Q:比亚迪半导体其他产品的实力?
A:之前是芯片代数有差距,所以一直上不了量,毛利率也比较低,比如工业领域外销就5000万(比不过国内任何IGBT企业),用在变焊机等。所以关键是, 看比亚迪今年能不能把沟槽型的芯片推广到变频器厂等高端工业领域以及车载的外部客户突破 。如果今年外销还是只有4-5000万的话,那么说明他的芯片还是没有升级。
Q:吉利的人说士兰微的产品迭代很快,是国内最接近英飞凌的,怎么评价?
A:这个确实是这样,自己有fab厂三个月就能迭代一个版本,没有fab厂要六个月。 士兰微750V芯片能对标英飞凌,做到160-180kW的功率。他的饱和压降确实是国内最低的,目前他最大的劣势在于做车规比较晚,基本是零数据,需要这两年车载市场爆发背景下,在A00级别(零跑采用了,但是属于小批量,功率80KW以内,寿命要求也低一些;)和物流车上面发货来取得质量数据, 国内的车厂后面可能用他的产品 。(借鉴中车走过的路,除了性能还要有质量的积累) 。
Q:士兰微IPM起量的情况?
A: 国内市场主要针对白电的变频模块,国内一年6-7亿只;单价按照12-13元/个去算,国内70-80亿规模, 这块价格和毛利率比较低一些,国内主要是士兰微和吉林华微在做,斯达也开始设计但是量不大一年才几千万,所以, 士兰微是目前最大的,目前导入了格力、美的,量很大,今年有可能做到8个亿以上,是国产化的过程,把安森美替代掉 (一旦导入了就有很大机会可以上量);但是,这块IPM毛利率不会太高。要提毛利率的话还是要做工业和车规级(斯达毛利率40%以上就是因为只做工控和 汽车 等级,风电,碳化硅这些都是毛利率50%以上的)
Q:士兰微12英寸的情况?
A:去年底开始量产,士兰微12英寸前期跑MOS产品,公司去年工业1200V的IGBT做了一个亿,今年能做2-3亿;目前MOS能做到收入10亿。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)