昨天看到这样一篇文章,是说LED的存在12大问题,我望对LED了解的人提提意见,

昨天看到这样一篇文章,是说LED的存在12大问题,我望对LED了解的人提提意见,,第1张

LED概述

LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。

LED历史

50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯线的作用,所以LED的抗震性能好。

发光二极管的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为P-N结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结施加反向电压时,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。 当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。

最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命、低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。

对于一般照明而言,人们更需要白色的光源。1998年白光的LED开发成功。这种LED是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含Ce3+的YAG荧光粉受此蓝光激发后发出黄色光射,峰值550nm。蓝光LED基片安装在碗形反射腔中,覆盖以混有YAG的树脂薄层,约200-500nm。 LED基片发出的蓝光部分被荧光粉吸收,另一部分蓝光与荧光粉发出的黄光混合,可以得到得白光。现在,对于InGaN/YAG白色LED,通过改变YAG荧光粉的化学组成和调节荧光粉层的厚度,可以获得色温3500-10000K的各色白光。这种通过蓝光LED得到白光的方法,构造简单、成本低廉、技术成熟度高,因此运用最多。

上个世纪60年代,科技工作者利用半导体PN结发光的原理,研制成了LED发光二极管。当时研制的LED,所用的材料是GaASP,其发光颜色为红色。经过近30年的发展,现在大家十分熟悉的LED,已能发出红、橙、黄、绿、蓝等多种色光。然而照明需用的白色光LED仅在近年才发展起来,这里向读者介绍有关照明用白光LED。

LED Summary

LED (Light Emitting Diode), light-emitting diode, is a solid state semiconductor devices, which can be directly converted into electricity to light. LED is the heart of a semiconductor chip, the chip is attached to one end of a stent, is the negative side, the other end of the power of the cathode, the entire chip package to be epoxy resin. Semiconductor chip is composed of two parts, part of the P-type semiconductor, it inside the hole-dominated, the other side is the N-type semiconductor, here is mainly electronic. But linking the two semiconductors, among them the formation of a "PN junction." When the current through the wires role in this chip, will be pushing e-P, P zone in the hole with electronic composite, and then to be issued in the form of photon energy, and this is the principle of LED luminescence. The wavelength of light that is the color of light, is formed by the PN junction of the decisions of the material.

LED history

50 years ago, people have to understand semiconductor materials can produce light of the basic knowledge, the first commercial diodes in 1960. English is the LED light emitting diode (LED) acronym, and its basic structure is an electroluminescent semiconductor materials, placed in a wire rack, then sealed with epoxy resin around, that is, solid package, Therefore, the protection of the internal batteries can play the role of line, so the seismic performance LED good.

LED is the core of the P-type semiconductor and components of the N-type semiconductor chips, the P-type semiconductor and N-type semiconductor between a transition layer, called the PN junction. In some semiconductor materials in the PN junction, the injection of a small number of carrier-carrier and the majority of the extra time will be in the form of light energy to release, thus the power to direct conversion of solar energy. PN junction on reverse voltage, a few hard-carrier injection, it is not luminous. This use of injection electroluminescent diodes is produced by the principle of light-emitting diodes, commonly known as LED. When it in a positive state of the work (that is, at both ends with forward voltage), the current flows from the LED anode, cathode, semiconductor crystals on the issue from the ultraviolet to infrared light of different colors, light and the strength of the currents.

Instruments used for the first LED light source instructions, but all kinds of light colored LED lights in traffic and large screen has been widely applied, have a very good economic and social benefits. The 12-inch red traffic lights as an example, is used in the United States have long life, low-efficiency 140 watt incandescent lamp as a light source, it produced 2,000 lumens of white light. The red filter, the loss-90 percent, only 200 lumens of red light. In the light of the new design, Lumileds companies have 18 red LED light source, including the loss of circuit, a total power consumption of 14 watts to generate the same optical effect. Automotive LED lights is also the source of important areas.

For general lighting, people need more white light sources. The 1998 white LED successful development. This is the GaN LED chip and Yttrium Aluminum Garnet (YAG) package together cause. GaN chip of the Blu-ray (λ p = 465nm, Wd = 30nm), made of high-temperature sintering of the Ce3 + YAG phosphors excited by this Blu-ray after irradiating a yellow, the peak 550 nm. Blue-chip installed in the LED-based Wanxing reflection in the cavity, covered with a resin mixed with YAG thin layer, about 200-500 nm. LED-based tablets issued by the Blu-ray absorption part of the phosphor, the phosphor another part of the Blu-ray and a yellow light mixed, can be a white. Now, the InGaN / YAG white LED, YAG phosphor by changing the chemical composition of the phosphor layer and adjust the thickness of the 3500-10000 K color temperature can be colored white. This blue LED through the method by white, constructed simple, low-cost, high technology is mature, so use the most.

In the 1960s, the use of science and technology workers semiconductor PN junction of The principle of developing a LED light-emitting diodes. At that time, the development of LED, the materials used are GaASP, its luminous color is red. After nearly 30 years of development, and now we are very familiar with the LED, has been sent to red, orange, yellow, green, blue, and other shade. However lighting necessary for white LED light only in recent years to develop, readers here to tell us about lighting with white LED.

TCS: Tanking Control System 油罐装油控制系统

Telemetry and Command System 遥测和指挥系统

Thermal Control System 热控制系统

Traffic Control Station 交通管制站

IRS: Internal Revenue Service 美国国税局

DSS: Deep Space Station太空站

Deep Submergence System 深潜系统

Disc Storage System 磁盘存贮系统

Dynamic System Synthesizer【计】动态系统合成器EC: Eastern Central [英](伦敦)东部中央邮(政)区

Established Church [英]【宗】国教

Earth Current 接地电流

East Coast 东海岸[美]

Eucador 厄瓜多尔[拉美]

Educational Committee 教育委员会

Effective Concentration 有效浓度

Elasticity Coefficient d性系数

Electronic Computer 电子计算机

Electronically Controlled 电子控制的

Enamel-Covered (wire)漆包的(导线)

Erection Computer (火箭起飞前的)安装计算机

Error Correcting 误差校正

Ethyl Cellulose 乙基纤维素

European Communities 欧洲共同体

Extension Courses 函授课程

CAI: Computer-Assisted [Computer Aided] Instruction 计算机辅助教学MES:Mechanical Engineering Society 机械工程学会

OA:Obligation Authority(负担)债务的权限

Office Address 办公地址

Official Assignee 法定受让人

Old Account 旧帐(户)

Old Age老年

Omni Antenna 全向天线

One Adder 加1加法器

Open Account【商】未结算的帐户

Out of Action 停止射击, 停止照射发生故障

Output Axis 输出轴

Overall 总的(尺寸), 轮廓(尺寸)

MOS:Magnetic Tape Operating System磁带 *** 作系统

Management Operating System(业务)管理 *** 作系统

Metal-OxideSemiconductor 金属-氧化物半导体

Metal -Oxide -Silicon 金属-氧化物-硅

Modular Operating System【计】定型组件[单元组合]运算系统, 模块 *** 作系统

CAD:Computer Aided Design计算机辅助设计

Computer Aided Detection 计算机辅助探测

CAM:Central Address Memory 集中编址存储器, 中央地址存储器

Checkout and Automatic Monitoring 检测及自动监控

Computer Aided Manufacturing 计算机辅助制造

Content Addressed Memory相联存储器

CIMS:计算机集成制造系统

WFS:Windows Future Storage Windows未来的存储系统

SDI: Selective Dissemination of Information 信息选择传播, 定题资料选报

1. Semiconductor laser also known as laser diodes (LD). Into the 1980s, people absorb the semiconductor development of the latest achievements in physics, using a quantum well (QW) and strained quantum well (SL-QW), and other new structures, the introduction of index modulation Bragg launchers and enhanced modulation Bragg launchers The latest technology, and also the development of the MBE, MOCVD and the CBE, and other new technology of crystal growth, making the new epitaxial growth technology to precisely control the crystal growth, to achieve the precision of atomic layers thick, high-quality grown quantum wells and strained quantum well materials. Thus, to create the LD, the threshold current significant drop significantly improve the conversion efficiency, output power have increased significantly lengthen life.

2. Optoelectronics, the rapid development mainly based on quantum mechanics and materials science in the development, with particular attention is the development of optoelectronic semiconductors. LED, LD Shenqi these electronic devices is the result of this development, particularly the recent development of the organic photoelectric materials, and more is great to promote the progress of the photoelectric materials.

Why is the first semiconductor LED »

When the electronic conduction band jumped from the top to enter the zone at the time, a certain loss of energy, the energy becomes a photon emission out, is popular to say that the luminescence. Oh:) semiconductor laser is a direct bandgap semiconductor materials constitute the PN junction of material or PIN entered into a small laser. Semiconductor laser work of dozens of substances, has made laser Jia arsenide semiconductor material (GaAs), arsenic Gu (InAs), gallium nitride (GaN), antimony and Gu (InSb), curing the pot (cds), hoof-fu (CdTe), lead selenide (PbSe), tellurium and lead (PhTe ), Al Jia arsenic (A1xGa, -, As), Gu phosphorus arsenic (In-PxAS), and so on. Semiconductor laser incentive There are three main ways, that is, people-Note, optical pump-and-high-energy electron beam incentives. The vast majority of Semiconductor laser is the way of incentives, Notes, or to Pn guitar and forward voltage, so that the guitar in a regional plane stimulated emission, that is a positive bias of the diodes, also known as the semiconductor laser diode laser diode . On the semiconductor, electronics is due in the transition between the band, rather than in discrete energy levels between the transition, the transition energy is not a set value, which makes semiconductor laser output wavelength distribution in a very broad The scope. They issued by the wavelength of between 0.3-34um. Wavelength range of its decision on the materials used by the band gap, the most common is AlGaA: double-heterojunction laser, the output wavelength of 750 - 890nm. The world On the first semiconductor laser is available in 1962, after several decades of research, semiconductor laser achieved a surprising development, and its infrared wavelengths from the red light green to blue, gradually expanding the scope covered, the performance Parameters also have greatly increased their production by the proliferation of technology has to LPE Law Act (LPE), extension of gas (VPE), MBE Act (MBE), MOCVD method (metal organic compounds vapor deposition) , Chemical beam epitaxy (CBE) and their various combined, and other technology. Lasing closure of its current value from a few hundred mA down to a few dozen mA, until the sub-mA, its life expectancy by a few hundred to tens of thousands of hours, and 1 million hours from the initial low-temperature (77 K) under development to operate at room temperature for work, the power output by several milliwatts to kilowatts level (Array) it has a high efficiency, small size, light weight, simple structure, can Power for the direct conversion of laser energy, high power conversion efficiency (has reached more than 10 per cent, up to 50 per cent). Facilitate direct modulation, power-saving advantages, applications growing. At present, the fixed-wavelength laser diode to use the number of Habitat All of the first laser, the application of certain important areas over the past used the other lasers, has gradually been replaced by a semiconductor laser.

Semiconductor Laser is the biggest drawback: laser properties affected by temperature, the beam divergence angle greater (in general several times to 20 degrees), so in the direction and coherence of monochrome and other poor areas. But with the With the rapid development of science and technology, the semiconductor laser-depth study positive direction, the performance of semiconductor laser continuously improve. Semiconductor laser power can reach very high level, and beam quality has been greatly improved. Semiconductor laser as to The core semiconductor photonics technology in the 21st century information society will make more progress, play a bigger role.


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8947174.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存