1.1.1.1 电阻率和电导率
表示物质导电性能的参数是电阻率(ρ)和电导率(σ)。在电法勘探中,人们用得比较多的是电阻率,在国际单位制中采用欧姆·米(Ω·m)为电阻率的单位。电导率和电阻率互为导数,σ=1/ρ,σ的单位为西门子每米,记作S/m。显然,物质电阻率越低、电导率越大,其导电性越好;反之,其导电性越差。
1.1.1.2 矿物的电阻率
岩石和矿石都是由矿物组成的,因此在讨论岩、矿石电阻率之前,先来介绍一些常见矿物的电阻率。
按照导电机制不同,固体矿物可分为三种类型,即金属导体、半导体和固体电解质。
(1)金属导体
各种天然金属均属于金属导体。较重要的天然金属有自然金和自然铜,其电阻率值均很低:自然金的电阻率约为2×10-8Ω·m,自然铜则约为1.2×10-8~30×10-8Ω·m。此外,石墨这种具有某些特殊性质的电子导体也具有很低的电阻率值(低达10-6Ω·m)。
(2)半导体
大多数金属矿物均属于半导体,其电阻率值都高于金属导体,这是由于半导体中能参与导电的电子数目较少。自然界中矿物半导体的性质多半同其所含杂质的种类和含量有关,有时微量(如1/105)的杂质可使半导体的导电性提高几个级次。由于这种原因,半导体矿物的电阻率值都有较大的变化范围(10-6~106Ω·m)。表1.1.1列出了若干常见半导体矿物电阻率值的变化范围。
表1.1.1 若干常见半导体矿物的电阻率值
由表1.1.1可见,大多数常见的金属硫化物(如黄铜矿、黄铁矿、方铅矿等)和某些氧化矿物(如磁铁矿),其电阻率值均较低(<1Ω·m),具有良好的导电性;另一些金属硫化矿物和氧化矿物,如辉锑矿、闪锌矿、锡石、软锰矿、铬铁矿和赤铁矿等,它们的电阻率均较高(1~106Ω·m)。
上述金属导体和半导体的导电作用都是通过其中某些电子在外电场作用下的定向运动来实现的,它们均为电子导体。
(3)固体电解质
绝大多数的造岩矿物,如辉石、长石、石英、云母和方解石等,在导电机制上属于固体电解质(导电性来源于晶格中离子的迁移)。固体电解质电阻率值都很高,通常ρ≥106Ω·m,在干燥情况下可视为绝缘体。
1.1.1.3 岩石和矿石的电阻率
由上述可知,矿物电阻率值是在一定范围内变化的,同种矿物可有不同的电阻率值,不同矿物也可有相同的电阻率值。因此,由矿物组成的岩石和矿石的电阻率也必然有较大的变化范围。图1.1.1为几种常见岩石电阻率值的分布范围曲线。由图1.1.1可见,火成岩与变质岩的电阻率值较高,通常在102~105Ω·m范围内变化;沉积岩电阻率值一般较低,如黏土电阻率为1~10Ω·m,砂岩的电阻率为102~103Ω·m,而灰岩的电阻率则较高些。
以上3种岩类电阻率的变化固然与其矿物成分有关,但在很大程度上却取决于它们的孔隙度及其中所含水分的多少。
对矿石电阻率而言,也有类似情况。其电阻率值除与组成矿物成分、含量有关外,更主要的是由矿物颗粒的结构构造决定。这些我们将在影响岩(矿)石电阻率的因素中进行讨论。
同一种岩石或矿石电阻率的变化范围虽然很大,但实际上不同的岩、矿石之间电阻率的差别还是存在的。这种差别正是应用电阻率法解决地质问题的基本前提。
1.1.1.4 影响岩石和矿石电阻率的因素
影响岩石和矿石电阻率的因素很多。岩石和矿石的电阻率除与其中良导电金属矿物含量有关外,还与岩石和矿石的结构、构造、孔隙度、含水量及含水溶解性总固体、温度、压力等有关。
图1.1.1 几种岩石电阻率的分布范围曲线
(1)岩石和矿石电阻率与成分和结构的关系
大多数的岩石和矿石,可视为均匀相连的胶结物和不同形状的矿物颗粒所组成。岩石和矿石的电阻率决定于这些胶结物和矿物颗粒的电阻率、形状及其相对百分含量。假设胶结物的电阻率为ρ1,矿物颗粒的电阻率为ρ2,当岩石或矿石仅由这两种成分组成时,则岩石和矿石的电阻率ρ与ρ1、ρ2及矿物颗粒的百分含量V有关,并且不同形状的矿物颗粒,其关系是不同的。根据等效电阻率的近似理论,有以下表达式:
1)球形颗粒
电法勘探
2)针状颗粒(近似于拉长的旋转椭球体)
电法勘探
式中:ρn和ρt分别是垂直颗粒长轴方向和沿着颗粒长轴方向的电阻率。
3)圆片状颗粒(近似于压扁的旋转椭球体)
电法勘探
在球形矿物颗粒的情况下,不论矿物本身(ρ2)为高阻还是低阻,当体积含量不太大(V<60%)时,整体岩石和矿石的电阻率ρ受ρ2之影响甚小,其值接近胶结物电阻率ρ1;仅当颗粒体积含量相当大(V≥80%)时,ρ2才对ρ有明显作用。这是由于颗粒体积含量不大时,各颗粒是相互分离的,而胶结物是彼此连通的,故矿物颗粒对整体岩石和矿石的电阻率影响不大,此时胶结物起主要导电作用。但是,当颗粒体积含量相当大,以致彼此连通时,矿物颗粒的电阻率ρ2便对岩石和矿石的电阻率有明显影响。可见,岩石和矿石中的某种组分对整体岩石和矿石的影响取决于它们的连通情况:连通者起作用大,孤立者起作用小。例如,星斑状、浸染状结构矿石的电阻率将高于网脉状或细脉状结构矿石的电阻率。其原因是前者的导电矿物彼此不连通,而后者的导电矿物却是互相连通的(图1.1.2)。
图1.1.2 矿石不同结构示意图
(图中黑色部分代表良导电矿物)
对针状和片状的结构的岩石和矿石,无论ρ1、ρ2及矿物颗粒的百分含量V大小如何,总有ρn≥ρt,即垂直针状或片状颗粒长轴方向的岩、矿石电阻率总是大于沿着颗粒长轴方向的电阻率。这表明针状和片状结构的岩石和矿石电阻率具有明显的方向性,即非各向同性。
在自然界中,对于大多数沉积岩和一部分变质岩,沉积旋回和构造挤压作用往往使两种或多种不同电性的薄层交替成层,形成层状构造。在一般情况下,层状岩石的电阻率也具有明显的方向性。层状结构岩石模型如图1.1.3所示,若两种电阻率分别为ρ1和ρ2的薄层岩石交替成层,它们的总厚度分别为h1和h2,则可按电阻并联和串联的关系,不难得到垂直层理方向和平行层理方向的电阻率表达式
图1.1.3 层状结构岩石模型
电法勘探
电法勘探
由式(1.1.4)和式(1.1.5)可以看出,由不同电阻率(ρ1≠ρ2)薄层岩石交替形成的层状岩石,不论ρ1和ρ2的相对大小,亦不论h1和h2的大小(除零外),其电阻率具有非各向同性的特点,并且总是平行层理方向的电阻率ρt(纵向电阻率)小于垂直于层理方向的电阻率ρn(横向电阻率)。为了表征层状岩石的非各向同性程度和平均的导电性,定义其非各向同性系数λ和平均电阻率ρm分别为
电法勘探
表1.1.2中列出了几种常见岩石的非各向同性系数λ和ρn/ρt值。由表可见,某些岩石(如石墨化炭质页岩、泥质页岩等)在垂直和平行层理两个方向的电阻率相差竟达4~7 倍以上,这在电法勘探资料的推断解释中应引起充分重视。
表1.1.2 几种常见岩石的非各向同性系数
(2)岩石和矿石电阻率与所含水分的关系
地下水及其他天然水的电阻率均较低,通常小于100Ω·m(表1.1.3),并且含盐分越多(溶解性总固体,TDS越高)电阻率值越低。岩石和矿石中所含水分的多少(或湿度大小)对其电阻率值有较大影响。
表1.1.3 几种常见天然水的电阻率值
一般含水量大的岩石电阻率较低,而含水量小或干燥岩石的电阻率较高。岩石含水量的大小,主要决定于岩石本身的孔隙度及当地的水文地质条件。在潜水面以下,岩石孔隙通常被地下水所充满,此时,岩石的含水量便等于其孔隙度。表1.1.4给出了几种常见岩石孔隙度的测定结果,它可作为估计潜水面以下岩石含水量的一个参考资料。
表1.1.4 几种常见岩石的孔隙度
处于潜水面以上的岩石,因大气中的水分通过降雨、降雪等可渗入地下,也并非完全干燥。在渗透过程中,由于岩石颗粒对水的吸附作用,岩石孔隙中能保存一部分水分。一般孔隙直径越小,吸水性越强,岩石的含水量便越大,故黏土电阻率较低。由表1.1.4可见,虽然火成岩比其他岩类的孔隙度小,但是,由于风化或构造破坏作用可使其裂隙或节理较发育,所以在自然界中,火成岩的电阻率往往较低。变质岩孔隙度则与变质程度有关,通常是变质程度越高岩石越致密,孔隙度越小,其电阻率越大。
阿尔奇公式是根据大量多孔性岩石电阻率测定、统计而得出的经验公式,它的数学表达式为
ρ=aΦ-mS-nρ0 (1.1.6)
式中:ρ为岩石的电阻率;ρ0为孔隙水的电阻率;a为比例系数,在0.6~1.5之间变化;Φ为孔隙度;S为含水饱和度;m为孔隙度指数,或称胶结系数,通常在1.5~3.0之间变化;n为饱和度指数,大约为2。
岩石的电阻率不仅与岩石孔隙度的大小有关,而且还取决于孔隙的结构。通常当孔隙连通较好时,其中水分对岩石电阻率影响大,反之影响较小。节理或裂隙式孔隙,亦具有明显的方向性,沿节理或裂隙方向岩石电阻率较低,而垂直于节理或裂隙方向电阻率则较高。
此外,当同类岩石所受外力作用强弱不同时,其孔隙度和电阻率大小也不一致。通常受外力作用较强的地段,其孔隙度变小,电阻率变大。因此,根据区域性岩石电阻率资料,有可能了解构造力的作用方向和范围。
(3)岩石和矿石电阻率与温度的关系
实际资料表明,当岩、矿石所处的外界温度发生改变时,其电阻率值也相应地发生变化。一般表现为温度升高,电阻率降低。这是由于岩、矿石中所含水溶液的电阻率与温度有明显的变化关系。图1.1.4为一块砂岩标本电阻率随温度变化的实验观测曲线,它表明,在0 ℃以上的正温度区内,随着温度的升高,电阻率值缓慢减小,变化不明显。即在常温条件下,温度变化对岩石电阻率的影响并不大。
图1.1.4 含水砂岩电阻率随温度变化的实测曲线
(孔隙度12%,湿度1.5%)
然而,在0 ℃以下的负温区内,随着温度的降低,含水岩石的电阻率明显增高。当温度下降到接近-20 ℃时,电阻率竟高达106Ω·m,较正温区的电阻率大三个级次。这是由于岩石孔隙中的水溶液结冰后导电性变得很差的原因。
由于温度的降低(特别是在0 ℃以下)可使岩石电阻率增高,故在寒冷地区或冰冻季节进行地面电法工作时,对需要通过接地电极向地下供电和测量的传导类电法而言,将会产生较大困难。因在那些地区,近地表的土壤或岩石电阻率很高,所以会使电极接地电阻很大。但对不需要接地的感应类电法而言,表层电阻率的变大,不会使其工作变得困难。
此外,由于在地壳常温带(自地表面向下20~25 m)以下,地温随深度的增加而变大,地温每升高1 ℃所下延的深度称地温增加率,其值因地而异,且同一地区不同深度也不一致。在我国平均约40 m增加1 ℃。这样,在地下1600 m深处的地温将比地面约高40 ℃。在那里,金属矿物的电阻率大约升高20%,而含水岩石的电阻率约降低一半。因此,通过对深部岩石电阻率的观测,可给出某一地区地下温度场变化规律的资料,以用于寻找地下热能资源和研究地质构造。这方面的问题已日益为人们所重视。
大家知道,通常将地球划分为地壳、地幔和地核三大部分,地壳是地球最表面的一层,它的平均厚度约为33km。地球内部的压力和温度随深度的增加而变大和升高。因此地球深部岩石的电阻率受高温、高压的影响很大,且不呈简单的线性关系,这里不再详述。
1.1.1.5 岩石和矿石标本电阻率的测定
获得岩石电阻率值的方法之一,是用四极装置以小电极距在岩石露头上进行测定,这种方法通常称为露头法。此外,用电测井方法和岩心、标本测定方法也可以获得岩石的电阻率。露头法将在均匀大地电阻率的测定中进行介绍。
图1.1.5 测量岩石和矿石标本电阻率的装置简图
测定岩石和矿石标本电阻率的方法很多,这里以常用的四极法为例,说明其测定电阻率的方法原理。图1.1.5 为测量岩石和矿石标本电阻率的装置简图。在截面为S的长方形岩石或矿石标本的两端,装有与标本紧密接触的金属片状电极A和B,A、B极的外路与电流表、干电池等联成回路。另外,在岩石标本的中部,绕有与标本紧靠,并由金属丝做成的相距为l的两个环形电极M、N,M和N的外路与测量电位差的电位计和导线连通。
当进行测量时,在A、B回路中供电电流为I,若M、N极间引起的电位差为ΔUMN,则可按下式计算岩石标本的电阻率
电法勘探
应当指出,这种测定电阻率的方法,并不是通常都能做到的,因为它要求岩石标本要有较规则的形状。此外,天然岩石经过加工后,其内部矿物结构情况可能发生变化,这必然会影响测定电阻率值的准确性。再则,经加工后的标本通常是放在水中浸润一定时间后进行测定的,这就使得标本表面部分的电阻率值低于标本内部的值。因此,测定的数值并不能完全代表野外条件下岩石的实际电阻率值。在进行标本电阻率测定工作或运用测定结果时,对上述问题均给以充分的注意。
岩石和矿石电阻率测定结果表明,由于影响岩石和矿石电阻率大小的因素较多,因而其值局部变化很大。不难理解,某一块标本或某一个露头上所测得的岩石电阻率不可能代表整个工作地区某种岩层或矿体的平均电阻率值,甚至差别很大。于是,就需要在工作地区的不同地段尽量多地选择岩石露头或采集岩石标本进行电阻率测定。然后,应对测定结果进行统计、整理和分析研究。当岩石和矿石的导电性具有非各向同性时,还需进行不同方向测定和统计整理。
当某种岩石(或矿石)测定的标本数或露头上测定的点数小于30时,一般按下式计算岩石(或矿石)电阻率的几何平均值
电法勘探
式中:n为测定岩石标本的块数。
当测定的岩石标本块数或岩石露头点数很多时,则可以应用数理统计的方法,绘制频率分布直方图,以表示所测岩石电阻率的分布特征或确定其常见值。
从物理学中知道,一段导体的电阻R,与沿电流方向的长度L成正比,与垂直电流方向的横截面积S成反比:
R=ρ×L/S
因为电阻率是描述物质导电性优劣的一个电性参数,反映了物质的固有特性,故通常以电阻率为观测参数。其电阻率为
ρ=R×S/L (1-1)
在电法勘探中是这样定义电阻率的:当电流垂直流过单位截面积为S、单位长度为L的岩、矿石所呈现的电阻值即为该岩、矿石的电阻率ρ。
由式(1-1)及欧姆定律得
电法勘探技术
电阻率单位是欧[姆]米,记作Ω·m。有时也用电导率σ表示物质的导电性,其单位为西[门子]每米,记作S/m。电导率和电阻率互为倒数。物质电阻率越低,电导率越大,其导电性越好;反之,其导电性就越差。式(1-2)是标本法测定ρ的计算公式。
(一)天然岩、矿石的电阻率
天然岩、矿石都是由矿物组成的,为了解岩、矿石电阻率的特点和变化规律,首先应当研究各类矿物的电阻率。按导电机理而论,固体矿物可分为金属导电类矿物、半导体类导电矿物和固体离子类导电矿物三种。
金属类导电矿物包含各种天然金属,如自然金、银、铜、镍、铁等。在金属导体中,对传导电流起贡献的粒子(载流子)是基本上脱离了金属离子束缚、能在晶体中比较自由运动的电子,自由电子在各方向运动的概率相同,故总体不显出电荷的定向运动,即没有电流。当存在外电场时,自由电子趋于反电场方向运动,因而在导体内出现电流。金属导体的导电性非常好,其电阻率值很低,一般ρ≤10-6Ω·m。
半导体类导电矿物几乎包括所有的金属硫化矿物和金属氧化矿物。它们的电阻率变化范围较大,其中电阻率在n×10-6~n×100Ω·m范围内的常被称为良导电性矿物,如黄铁矿、黄铜矿、磁铁矿、方铅矿等;电阻率值在n×100~n×106Ω·m范围内的闪锌矿、辉锑矿、铬铁矿、赤铁矿等,常被称为中等导电性矿物。自然界中矿物半导体的性质多半同其所含杂质的种类和含量有关,有时微量(例如含量为10-5)的杂质便可使半导体导电性提高几个级次。由于这种成因,半导体矿物的电阻率值都有较大的变化范围。表1-1列出了若干常见的半导体矿物及其电阻率值的变化范围。
表1-1 常见矿物的电阻率
固体离子类导电矿物包含绝大多数造岩矿物,如石英、长石、云母、方解石、辉石等,这类矿石都属固体电解质。固体电解质是由正、负离子靠静电力(离子键)结合的离子晶体。固体电解质导电载流子为填隙离子或空格点,属于离子导电。通常,固体电解质的电阻率很高,一般ρ>106Ω·m。它们几乎是绝缘体。
由上述可知,矿物电阻率值是在一定范围内变化的,同种矿物可有不同的电阻率值,不同矿物也可有相同的电阻率值。因此,由矿物组成的岩石和矿石的电阻率也必然有较大的变化范围。表1-2为几种常见岩石电阻率值的分布范围。可见,火成岩(花岗岩、闪长岩、玄武岩)与变质岩(大理岩、石英岩)的电阻率较高,通常在102~105Ω·m范围内变化;沉积岩电阻率一般较低,如黏土电阻率约为1~10Ω·m,砂岩的电阻率约为102~103Ω·m,而灰岩的电阻率则较高些。
表1-2 常见岩石的电阻率值
以上岩石电阻率的变化固然与其矿物成分有关,但在很大程度上却取决于它们的孔隙度或裂隙度及其中所含的水分的多少。对矿石电阻率而言,也有类似的情况。其电阻率值除与组成矿石的矿物成分、含量有关外,更主要的是由矿物颗粒的结构构造所决定。
(二)影响岩、矿石电阻率的因素
影响岩、矿石电阻率的因素有很多,除与导电矿物含量有关外,岩、矿石的结构与构造、孔隙度、含水量及含水矿化度、温度、压力等都或多或少地影响着岩、矿石的电阻率。下面主要讨论成分、结构、所含水分以及温度对它们的影响作用。
1.岩、矿石电阻率与其成分和结构的关系
大多数岩、矿石和土,可视为由均匀相连的胶结物和不同形状的矿物颗粒所组成。其电阻率决定于这些胶结物和矿物颗粒的电阻率、形状及其百分含量。自然界含片状或针状良导矿物的网脉状或细脉状金属矿石,沿网脉或细脉方向的电阻率值,大大低于同等金属矿物含量的浸染状矿石电阻率;而含片状、树枝状高阻矿物(如石英脉)的岩石,垂直于岩脉方向上的电阻率值往往很高。因此,一般情况下,岩、矿石的结构构造比矿物颗粒含量对岩、矿石电阻率的影响更重要。
下面讨论层状构造岩石的电阻率。
大多数沉积岩和某些变质岩,由于沉积旋回和构造挤压作用往往使两种或多种不同的薄层交替成层,形成层状构造。一般情况下层状岩石的电阻率也具有方向性,即各向异性。
图1-1 层状岩石模型图
如图1-1所示,两种电阻率分别为ρ1和ρ2的薄层岩石交替成层,若两种薄层的总厚度分别为h1和h2,则沿层理和垂直层理方向的电阻率ρt和ρn分别可由下式表示:
电法勘探技术
电法勘探技术
由以上两式可看出:由不同电阻率(ρ1≠ρ2)薄层岩石交替形成的层状岩石,不论ρ1和ρ2的相对大小如何,亦不论h1和h2多大(不能为零),其电阻率具有非各向同性,并且,总是沿层理方向的电阻率ρt小于垂直于层理方向的电阻率ρn。定义层状岩石的各向异性系数
电法勘探技术
和平均电阻率
电法勘探技术
以表征层状岩石的各向异性程度和平均导电性。表1-3列出了几种常见岩石的各向异性系数λ。由表1-3可见,某些岩石(如石墨化碳质页岩、泥质页岩等)在垂直和平行层理两个方向的电阻率相差竟达4~7倍以上。这在推断解释电法勘探资料时,必须引起充分重视。
表1-3 几种常见岩石的非各向同性系数
2.岩、矿石电阻率与所含水分的关系
除含有良导电矿物的金属矿石或矿化岩石外,绝大多数岩石由造岩矿物组成。这样看来,似乎岩石的电阻率应与固体电解质的电阻率具有相同的数量级,都在106Ω·m以上。实际并非如此,通常自然状态下,岩石电阻率都低于此值,甚至有低达n×10Ω·m以下的情况。这是因为岩石都在不同程度上含有导电性较好,并且彼此有相互连通的水溶液之故。
孔隙中充满水分的砂、砾石的电阻率ρ与其体积含水量(湿度)ω和孔隙水电阻率ρ水的关系可由下式给出:
电法勘探技术
式中:ρ水为孔隙水的电阻率;ω为岩石的体积含水量(湿度)。
式(1-5)表明:岩石电阻率ρ随ρ水成正比关系变化,同时随湿度ω的增大而减小。这种反比关系在湿度很小(ω从零到百分之几)时尤其明显,因为当湿度减小到一定程度后,岩石中的水呈现为附着在岩石孔隙表面的薄膜水,彼此不相连通,因而使岩石电阻率急剧增大。
对于孔隙未被水充满的岩石,电阻率ρ与ω和ρ水的关系比较复杂,但总的规律仍是岩石电阻率ρ与ρ水成正比,并随ω增大而减小。因此,岩石所含水分的多少和孔隙水电阻率的高低乃是决定含水岩石电阻率的两个基本因素。表1-4列出了几种天然水的电阻率值。
表1-4 几种常见天然水的电阻率
岩石的电阻率不仅与岩石孔隙度的大小有关,而且还决定于孔隙的结构。通常当孔隙连通较好时,其中水分对岩石电性影响较大;而空穴式孔隙(如喀斯特溶洞或喷出岩的气孔等),因其彼此不相连通,即使充满了水分,对岩石整体电阻率的影响也较小。节理或裂隙式孔隙,具有明显方向性,往往使岩石电阻率具有各向异性,沿节理或裂隙方向电阻率较低,垂直方向上电阻率较高。表1-5列出了几种常见岩石的孔隙度。
表1-5 几种常见岩石的孔隙度
3.岩、矿石电阻率与温度的关系
图1-2 含水砂岩电阻率随温度变化的实验曲线
砂岩孔隙度为12%,体积含水量ω=1.5%
电子导电矿物或矿石的电阻率随温度增高而上升;离子导电岩石的电阻率随温度增高而降低。地壳中岩、矿石的温度与两种因素有关:距离地表的远近和季节气候的变化。其中太阳辐射引起的季节变化只能影响地壳上层约15m的深度,推测在地表下20~25m地段,岩、矿石的温度(即地温)不受季节影响,保持为当地年平均温度,该段称为常温带。常温带以下,地温随深度的增加而增高。地温每升高1℃所下延的深度为地温增加率。各地的地温增加率是不同的,在我国平均为40m左右增高1℃。这样,在地下1600m深处的地温将比地面约高40℃。在那里,金属矿物的电阻率增高20%,而含水岩石的电阻率差不多降低50%。通过对深部岩石电阻率的观测,给出某地区地下温度场的变化特征,可用于寻找地热资源或研究地质构造。在探查金属及非金属矿产时,由于所研究的深度一般很少超过1000m,在通常的气温条件下,温度对岩、矿石电阻率的影响不大。但在研究深部构造或地热田时,则必须考虑地温对岩石电阻率的影响。此外,应当指出,当气温降至0℃以下时,将会使地表含水岩石或土壤的电阻率发生很大变化。
图1-2的实验结果表明:随温度降低至0℃以下,含水砂岩的电阻率显著增高。当温度降到-16℃时,含水砂岩的电阻率高达106Ω·m以上,比冰点以上的电阻率值大三个量级。冰冻岩石电阻率显著增高是岩石中孔隙水结冰后失去了导电性水溶液的缘故。由于孔隙水总含有一定盐分,盐分使溶液的冰点降低;当孔隙水的一部分结冰后,盐离子移向仍旧为液相的那一部分,使其含盐量增大,冰点进一步降低。
因此,岩石中孔隙水的结冰过程发生于一个宽阔的温度范围,而不是发生在某个特定的温度上。图1-2中的实验结果正反映了这种情况。
冰冻季节地表岩石或土壤电阻率显著增高,对电法勘查有很大影响,一方面它使电极接地电阻增大,造成直流电法施工困难;另一方面,表层电阻率增高使其他干扰减小,因而对感应类电法来说,是十分有利的工作条件。
4.岩、矿石电阻率与压力的关系
在压力极限内,压力大使孔隙中的水挤出来,则ρ变大,压力超出岩石破坏极限,则岩石破裂,使ρ降低。
含水岩石的电阻率与其岩石学特征、地质年代有某些间接关系,因为这两者对岩石的孔隙度或储水能力以及所含水分的盐量都有影响。表1-6概括了这种关系的一般特征(KellerandFrischnecht,1966),表中从左到右岩石的孔隙度逐渐减小,如海相碎屑岩其孔隙度高达40%,其电阻率相应较低;化学沉积岩实际上可认为不含水分,其电阻率最高。表中自上而下岩石的地质年代由新到老,显然,愈老的岩石胶结程度和致密程度愈高,因而孔隙度和储水能力愈低,电阻率愈高。
表1-6 不同地质年代各种岩石电阻率的变化范围 单位:Ω·m
综上所述,影响岩、矿石电阻率的因素是多方面的,在金属矿产普查和勘探中,岩、矿石中良导电矿物的含量及结构是主要影响因素。在水文地质、工程地质调查和沉积区构造普查、勘探中,岩石的孔隙度、含水饱和度及矿化度等成了决定性因素。而在地热研究、地震地质及深部地质构造研究中,温度及地应力变化却成了应考虑的主要因素。
电阻率是表现物质导电性的基本参数,某种物质的电阻率实际上就是当电流垂直通过由该物质所组成的边长为1m的立方体时呈现的电阻。显然,物质的电阻率越低,其导电性就越好反之,若物质的电阻率越高,其导电性就越差。在电法勘探中,电阻率的单位采用欧姆·米来表示(或记作Ω·m)。显然,电阻率的倒数1/ρ为电导率,以σ来表示,它直接表征了岩石的导电性能。
自然状态下的岩土是由各种固体岩石或矿物组成的,并且或多或少含有一定数量的孔隙水。因此,研究介质的导电性,必须研究它的组成———固体矿物和孔隙水的导电性。
(一)介质的导电机制
1.固体矿物的导电机制
按照导电机制可将固体矿物分为三种类型:金属导体、半导体和固体电解质。
在金属导体和半导体中导电作用都是通过其中的某些电子在外电场作用下定向运动来实现的,它们都是电子导体。
(1)各种天然金属属于金属导体
这类矿物在地壳中并不经常出现,但当其出现时便具有一定的经济价值。比较重要的天然金属有自然铜、自然金。此外,石墨是具有某些特殊性质的一种电子导体。
在金属导体中,对传导电流起贡献的粒子(载流子)基本上脱离了金属离子的束缚,能在晶体中自由运动的几率相同,故总的看来不显出电荷的定向运动,即没有电流。当存在外电场时,自由电子趋于反电场方向运动,因而在导体内出现电流。金属导体的导电性十分好,其电阻率ρ值很低,一般ρ≤1Ω·m。
(2)大多数金属矿物属于半导体
其电阻率高于金属导体,通常ρ=10-6~106Ω·m。这是因为半导体中能参与导电性的电子数目较少。自然界中矿物半导体的性质多半同其所含杂质的种类和含量有关,有时微量(例如含量10-5)的杂质便可使半导体导电性提高几个级次。由于这种成因,矿物的电阻率值都有较大的变化范围。表1-9列出若干常见介质及其电阻率值的变化范围。
表1-9 常见介质的电阻率值的变化范围
(3)固体电解质
绝大多数造岩矿物(如辉石、长石、云母、方解石、角闪石、石榴子石等)在导电机制上属于固体电解质。固体电解质是由正、负离子靠静电力(离子键)结合的离子晶体。固体电解质导电载流子为填隙离子或空格点,故其属于离子导电。通常,固体电解质的电阻率很高,一般ρ>106Ω·m。
2.孔隙水的导电机制
几乎所有的天然岩土都或多或少地含有水分。这些存在于岩、土裂隙或孔隙中的水分(统称孔隙水)通常对岩、土的导电性质有影响。蒸馏水的导电性极差,几乎可以看成是绝缘的。但是,天然岩土中的孔隙水总是在不同程度上含有某些盐分(电解质),当电解质溶于水形成电解液时,其中一部分电解质的正、负离子会彼此分开,并可在溶液中互不依赖地自由运动,即所谓电离或离解。电解液正是借助于其中处于电离状态的正、负离子而导电,故为离子导体。电解液的电阻率与其载流子———离解的正、负离子的浓度和迁移率成反比。一般来说,岩石孔隙水溶液中离解的正、负离子的浓度和迁移率都远大于造岩矿物(固体电解质)中填隙离子或空格点的浓度和迁移率。因此,孔隙水的电阻率一般都远小于造岩矿物。大量实测资料证明,岩石孔隙水的电阻率值很少超过100Ω·m,通常在1~10Ω·m之间。
(二)影响岩、土导电性的因素
岩石和土都是矿物的集合体,并且常常含有一定的孔隙水。因此,岩、土的电阻率必然和它的组成矿物的结构、构造及其相互作用及所含水的导电性、含量等有关。
1.岩土电阻率与其成分和结构的关系
大多数岩矿和土,可视为由均匀相连的胶结物和不同形状的矿物颗粒所组成。其电阻率决定于这些胶结物和矿物颗粒的电阻率、形状及其百分含量。自然界含片状或针状良导矿物的网脉状或细脉状金属矿石,沿网脉或细脉方向的电阻率值,大大低于同等金属矿物含量的浸染状矿石电阻率而含片状、树枝状高阻矿物(如石英脉)的岩石,垂直于岩脉方向上的电阻率值往往很高,因此,一般情况下,岩石、矿石的结构构造比矿物颗粒含量对岩石、矿石电阻率的影响更重要。
下面讨论层状构造岩石的电阻率。
大多数沉积岩和某些变质岩,由于沉积旋回和构造挤压作用往往使两种或多种不同的薄层交替成层,形成层状构造。一般情况下层状岩石的电阻率也具有方向性,即各向异性。
两种电阻率分别为ρ1和ρ2的薄层岩石交替成层,若两种薄层的总厚度分别为h1和h2,则沿层理和垂直层理方向的电阻率ρt和ρn分别由下式表示:
环境与工程地球物理勘探
由以上两式可看出:由不同电阻率(ρ1≠ρ2)薄层岩石交替形成的层状岩石,不论ρ1和ρ2的相对大小如何,亦不论h1和h2多大(不能为零),其电阻率具有非各向同性,并且,总是沿层理方向的电阻率ρt小于垂直于层理方向的电阻率ρn。定义层状岩石的各向异性系数为
环境与工程地球物理勘探
和平均电阻率为
环境与工程地球物理勘探
以表征层状岩石的各向异性程度和平均导电性。表1-10列出了几种常见岩石的各向异性系数(λ)。由表可见,某些岩石(如石墨化碳质页岩、泥质页岩等)在垂直和平行层理两个方向的电阻率相差竟达4~7倍以上。这在推断解释电法勘查资料时,必须引起充分重视。
表1-10 几种常见岩石的各向异性
2.岩石、矿石电阻率与所含水分的关系除含有良导电矿物的金属矿石或矿化岩石外,绝大多数岩石由造岩矿物组成。这样看来,似乎岩石的电阻率应与固体电解质的电阻率具有相同的数量级,都在106Ω·m以上但实际上自然状态下岩石电阻率低于此值,甚至有低达n×10Ω·m以下的情况。这是因为岩石都在不同程度上含有导电性较好、并且彼此有相互连通的水溶液的原因。
孔隙中充满水分的砂、砾石的电阻率ρ与其体积含水量(湿度)和孔隙水电阻率的关系可由式(1-15)导出:
环境与工程地球物理勘探
式中:ρ水为孔隙水的电阻率ω为岩石的体积含水量。
式(1-19)表明:岩石电阻率ρ随ρ水成正比关系变化,同时与湿度ω成反比关系变化。这种反比关系在湿度很小(ω从零到百分之几)时尤其明显。因为当湿度减小到一定程度后,岩石中的水呈现为附着在岩石孔隙表面的薄膜水,彼此不相连通,因而使岩石电阻率急剧增大。
对于孔隙未被水充满的岩石,电阻率与ω和ρ水的关系比较复杂,但总的规律仍是岩石电阻率与ρ水成正比,并随ω增大而减小。因此,岩石所含水分的多少和孔隙水电阻率的高、低乃是决定含水岩石电阻率的两个基本因素。表1-11列出了几种天然水的电阻率值。
表1-11 几种常见天然水的电阻率
岩石的电阻率不仅与岩石孔隙度的大小有关,而且还决定于孔隙的结构。通常当孔隙连通较好时,其中水分对岩石电性影响较大而空穴式孔隙(如喀斯特溶洞或喷出岩的气孔等),因其彼此不相连通,即使充满了水分,对岩石整体电阻率的影响也较小。节 理或裂隙式孔隙,具有明显方向性,往往使岩石电阻率具有各向异性,沿节 理或裂隙方向电阻率较低,垂直方向上电阻率较高。
3.岩石、矿石电阻率与温度的关系
电子导电矿物或矿石的电阻率随温度增高而上升离子导电岩石的电阻率随温度增高而降低。地壳中岩石、矿石的温度与两种因素有关:距离地表的远近和季节 气候的变化。其中太阳辐射引起的季节 变化只能影响地表上层约15m的深度,一般在地表下20~25m地段,岩石、矿石的温度(即地温)不受季节 影响,保持为当地年平均温度,该段称为常温带。常温带以下,地温随深度的增加而增高。地温每升高1℃所下延的深度为地温陡率。各地的地温增加率是不同的,在我国平均为40m左右增高1℃。这样,在地下1600m深处的地温将比地面约高40℃。在那里,金属矿物的电阻率增高20%,而含水岩石的电阻率差不多降低50%。通过对深部岩石电阻率的观测,给出某地区地下温度场的变化特征,可用于寻找地热资源或研究地质构造。在探查金属及非金属矿产时,由于所研究的深度一般很少超过1000m,在通常的气温条件下,温度对岩石、矿石电阻率的影响不大。但在研究深部构造或地热田时,则必须考虑地温对岩石电阻率的影响。此外,应当指出,当气温降至0℃以下时,将会使地表含水岩石或土壤的电阻率发生很大变化。
图1-11 含水砂岩电阻率随温度变化的实验曲线(砂岩孔隙度为12%含水量ω=1.5%)
图1-11的实验结果表明:随温度降低至0℃以下,含水砂岩的电阻率显著增高。当温度降到-16℃时,含水砂岩的电阻率高达106Ω·m以上,比冰点以上的电阻率值大3个量级。冰冻岩石电阻率显著增高是岩石中孔隙水结冰后失去了导电性水溶液的缘故。由于孔隙水总含有一定盐分,盐分使溶液的冰点降低当孔隙水的一部分结冰后,盐离子移向仍旧为液相的那一部分,使其含盐量增大,冰点进一步降低。因此,岩石中孔隙水的结冰过程发生于一个较大的温度范围,而不是发生在某个特定的温度。图1-11中的实验结果正反映了这种情况。
冰冻季节 地表岩石或土壤电阻率显著增高,对电法勘查有很大影响,一方面它使电极接地电阻增大,造成直流电法施工困难另一方面,表层电阻率增高使其他干扰减小,因而对感应类电法来说,是十分有利的工作条件。
4.岩、矿石电阻率与压力的关系
在压力极限内,压力大使孔隙中的水挤出来,则ρ变大,压力超出岩石破坏极限,则岩石破裂,使ρ降低。
(三)岩、矿石的电阻率
综上所述,由于影响岩、矿石电阻率的因素众多,自然状态下某种岩、矿石的电阻率并非为某一特定值,而多是在一定范围内变化。顺便指出,在岩、矿石的所有物理性质中,以电阻率的变化范围最大。在电法勘查所研究的深度范围内,岩石的导电作用几乎全是靠充填于孔隙中的水溶液来实现的。仅在少数情况下,如当岩石中含有相当数量、并且彼此相连的磁铁矿、石墨或黄铁矿等导电矿物,或是在相当深处,岩石的孔隙结构被上覆地层的压力所封闭时,岩、矿石中矿物颗粒的作用才占主导地位。前一种情况下的矿石可能具有很低的电阻率(<10Ω·m)而后一种情况下的岩石电阻率往往高达104Ω·m以上。
含水岩石的电阻率与其岩石学特征的地质年代有某些间接关系,因为这两者对岩石的孔隙度或储水能力以及所含水分的盐量都有影响。表1-12概括了这种关系的一般特征(Keller and Frischnecht,1966),表中从左到右岩石的孔隙度逐渐减小,如海相碎屑岩其孔隙度高达40%,其电阻率相应较低化学沉积岩实际上可认为不含水分,其电阻率最高。表中自上而下岩石的地质年代由新到老,显然,愈老的岩石胶结程度和致密程度愈高,因而孔隙度和储水能力愈低,电阻率愈高。
表1-12 不同地质年代各种岩石电阻率的变化范围
必须指出,如果由于变质作用使正常情况下的多孔岩石的孔隙度变小,或是高阻岩石中导电矿物含量相当多,以致足以降低其电阻率时,都会使岩石电阻率与表1-12中所列的变化范围不同,应当根据标本或露头测定结果具体了解当地岩石的电阻率值。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)