到底选择什么材料来做掺杂,有几个方面的考虑:
(1)原子的重量(AtomMass)。掺杂一般是有两种工艺:扩散(diffusion)和离子注入(ionimplantation)。所谓扩散,就是把掺杂原子直接跟单晶硅表面接触,再加上热能的辅助,杂质原子会扩散到硅晶体里面。但是,不同的原子,扩散系数(diffusioncoefficient)是不同的。笼统而言:原子质量越高的,扩散系数会更低,也难扩散到比较深远的位置。而离子注入所能到达的深度,更是跟原子质量息息相关。原子质量越大,越需要高能加速,才能注入到更深的区域。但副作用就是,原子质量越大,加速的能量越高,会对单晶硅造成更严重的晶格损伤(Latticedamage)。如果单晶硅被打成筛子,就成了多晶硅了(armophous),其光学特性和电学特性都会改变。所以,在离子注入之后,一般需要高温煺火(thermalannealing)。高温煺火作用有二:(i)修复晶格损伤,(ii)激活(thermalactivation)掺杂原子的自由电子(或空穴)。这个煺火温度肯定要低于硅的熔点,否则硅片都成液态了。但即便如此,如果latticedamage过于严重,煺火不见得能完全修复。
(2)激活能量(ActivationEnergy)。掺杂的原子进入单晶硅取代硅原子的位置,还需要煺火处理,来激活自由电子(空穴),从而改变半导体材料的导电性。不同的掺杂原子,其电子(空穴),从禁带(bandgap)里面的能级跃迁到导带(conductionband,对应电子)或者价带(valenceband,对应空穴),所需要提供的能量差是不一样的。具体的数值,我记得在半导体物理类的参考书里面有一个表格可以查到。这个能量差越大,需要煺火的温度越高。而集成电路制造,一定是有thermalbudget的,即,不能用太高的温度(+太长的煺火时间),否则会影响之前其他工艺流程所达到的参数。
所以,选择什么元素做掺杂,一定是个综合考量的过程。比如,希望在小区域内形成高浓度掺杂,用离子注入,低能量,重掺杂原子,效果会好。而希望在大的区域内形成比较均匀的低浓度掺杂,用扩散,轻一些的掺杂原子,更能达到目的。
当 N 型半导体和 P 型半导体材料首次结合在一起时,PN 结两侧之间存在非常大的密度梯度。结果是,来自施主杂质原子的一些自由电子开始迁移穿过这个新形成的结,以填充 P 型材料中的空穴,从而产生负离子。然而,由于电子已经从 N 型硅穿过 PN 结移动到 P 型硅,它们在负侧留下带正电的施主离子 ( N D ),现在来自受主杂质的空穴迁移穿过反方向的结进入有大量自由电子的区域。
结果,沿结的 P 型电荷密度被带负电的受体离子( N A )填充,沿结的 N 型电荷密度变为正。这种跨越 PN 结的电子和空穴的电荷转移称为扩散。这些 P 层和 N 层的宽度取决于每一侧分别掺杂受主密度N A和施主密度N D的程度。
这个过程来回持续,直到已经穿过结的电子数量具有足够大的电荷以排斥或阻止任何更多的电荷载流子穿过结。最终将出现平衡状态(电中性情况),当供体原子排斥空穴而受体原子排斥电子时,在结区域周围产生一个“势垒”区域。
由于没有自由电荷载流子可以停留在存在势垒的位置,因此与远离结的 N 和 P 型材料相比,结两侧的区域现在完全耗尽了任何更多的自由载流子。PN 结周围的这个区域现在称为耗尽层。
PN 结每一侧的总电荷必须相等且相反,才能在结周围保持中性电荷状态。如果耗尽层区域的距离为D,则它因此必须在正极侧穿透Dp的距离,在负极侧穿透Dn的距离,给出两者之间的关系: Dp*N A = Dn*N D 以保持电荷中性也称为平衡。
由于 N 型材料失去了电子而 P 型材料失去了空穴,因此 N 型材料相对于 P 型变为正。然后,在结的两侧存在杂质离子会导致在该区域上建立电场,N 侧相对于 P 侧处于正电压。现在的问题是,自由电荷需要一些额外的能量来克服现在存在的势垒,才能穿过耗尽区结。
在PN结的两端之间施加一个合适的正向电压(正向偏压)可以为自由电子和空穴提供额外的能量。克服目前存在的这种势垒所需的外部电压在很大程度上取决于所使用的半导体材料的类型及其实际温度。
通常在室温下,硅耗尽层两端的电压约为 0.6 – 0.7 伏,锗约为 0.3 – 0.35 伏。即使设备没有连接到任何外部电源,这种势垒也始终存在,如二极管所示。
这种跨结的内置电位的意义在于它反对空穴和电子穿过结的流动,这就是为什么它被称为势垒的原因。在实践中,PN 结是在单晶材料中形成的,而不是简单地将两个单独的部件连接或熔合在一起。
这一过程的结果是 PN 结具有整流电流-电压(IV 或 I-V)特性。电触点熔接到半导体的任一侧,以现与外部电路的电连接。制成的电子器件通常称为PN 结二极管或简称为信号二极管。
然后我们在这里看到,可以通过将不同掺杂的半导体材料连接或扩散在一起来制造 PN 结,以生产称为二极管的电子器件,该器件可用作整流器、所有类型的晶体管、LED、太阳能电池的基本半导体结构,以及更多这样的固态设备。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)