英特尔CEO基辛格曾经表示,希望在2025年英特尔能够重返产品领导者的地位,而就在上个月,英特尔在活动上正式透露了2025年目标计划,包括未来5代工艺制程节点线路图,通过彪悍的战略意图超越所有竞争对手,顺带还重新定义命名规则。
如同80486到奔腾,从奔腾到酷睿,每一次英特尔重大改名决策背后,几乎都会带来一段强劲的技术飞跃。这一次,就让我们抽点时间,聊聊英特尔的2025路线图应该怎么理解。
先说结果
如果你想简单了解整件事情,那么下面的表格应该可以帮助你最简单了解英特尔的时间节点。与往常一样,英特尔的技术用于生产和零售之间是有区别的。例如每个工艺节点可能存在数年,新的工艺与是否投入到实际产品中仍然要看市场运营状况,这里你可以理解为AMD再加把劲,让英特尔的牙膏挤猛一点。
回顾今年早些时候基辛格给出的IDM2.0战略,你可以理解在战略中一共3个要素,分别是:
可以看到第一点和第三点英特尔都在着重强调如何贯彻自己的工艺节点开发节奏,基辛格在近期的2021第三季度财报前瞻电话会议中曾表示,目前英特尔每天生产的10nm晶圆已经超过14nm,这标志着英特尔已经实现了向10nm工艺制程的转变。同时在今年6月份,英特尔还表示下一代10nm产品还需要额外的验证时间,以简化2022年在企业级产品上的部署。
(手机横屏观看更佳)
仍然需要注意,虽然英特尔一直在强调10nm工艺制程与对等产品的优越性,但台积电7nm和5nm的设计在事实上已经超过了英特尔量产芯片的晶体管密程度,并在出货量上超越了英特尔,这也是为什么基辛格全力推动英特尔内部全面改革,并获得董事会支持的动力所在。
Pat Gelsinger
因此这一次路线图的公布就变得非常重要了,这将代表着英特尔未来4年的战略节奏,或者调侃一点说是挤牙膏的进度。从整体上来看,英特尔正在积极改进新品提升进度,以及让技术之间更为模块化匹配更为成熟。
在IDM 2.0战略中推动整套技术发展的实 *** 人是去年被任命为英特尔技术与制造总经理安凯乐(Ann B. Kelleher),这个部门在2020年7月份成立,专注纯粹的技术开发,安凯乐本人在英特尔已经担任了26年工程师,先后管理过Fab 24(爱尔兰),Fab 12(美国亚利桑那),Fab 11X(美国新墨西哥州),以及在英特尔总部担任过制造与运营部门总经理。
Ann B. Kelleher
在会议上,安凯乐博士表示,已经在供应商、生态系统学习、组织架构、模块化设计策略、应急计划上做出了重大改变,同时技术团队也将以更精简的方式运行。英特尔将重返技术领先地位目标定义为“每瓦性能指标”表现,也意味着芯片的峰值性能仍然是英特尔发展战略重要计划的一部分。
Fab 11X
接下来,开始我们的长篇大论。
英特尔工艺制程新命名:重新定义有多小
英特尔重新命名工艺制程名称目的是更好的符合现在的行业命名方式,显然在营销手段上,打不过对方耍流氓,最有效的方式就是加入对方,并在其中依靠业界领导能力重塑业界规则,这一点英特尔是相当有魄力的。
其实在大众认知中,英特尔10nm技术等同于台积电7nm已经不再陌生,2D平面转向3D FinFET的时候,数字表达和物理情况之间再无直接关联,在三星带头下沦为营销工具,这样的混乱已经持续了五年之久。
现在我们先把英特尔公布的线路图放出来:
2020年,英特尔10nm SuperFin。 应用于Tiger Lake和Xe-LP独立显卡解决方案SG1和DG1,名称保持不变。
2021年下半年,Intel 7。 应用于Alder Lake和Sapphire Rapids至强可扩展处理器,以前被称为10nm Enhanced Super Fin,相当于10nm制程的晶体管优化产品,每瓦性能相对10nm SuperFin提升10%到15%。其中Alder Lake已经开始批量试产,也就是我们所期待的即将翻盘的12代酷睿。同时在GPU方面,英特尔Xe-HP也划入Intel 7的范畴中。
2022年下半年,Intel 4。 在此之前被称为Intel 7nm,应用于Meteor Lake和下下一代至强可扩展处理器,目前正在实验室测试阶段。英特尔预计每瓦性能能够比上一代提升20%。Intel 4主要会在后端制程(BEOL)中使用更多的极紫外光刻(EUV)。
2023年下半年,Intel 3。 此前称为Intel 7nm+,将增加EUV和高密度库(High Density Libraries)的使用。这里英特尔新模块化战略将会起到作用,例如Intel 3和Intel 4制程将共享一些特性。相对Intel 4,Intel 3每瓦能够提升约18%。
2024年,Intel 20A。 从这里开始就是英特尔制程的转折点,A代表埃米Ångström,10Å等于1nm,在此之前被称为Intel 5nm。由于英特尔在这个时间点将从FinFET转向RibbonFET,即环绕栅极晶体管设计(GAAFET)方向,原来的5nm称呼其实是不准确的。与此同时,英特尔还在这一代工艺上使用PowerVia技术,将供电模块与计算模块尽可能分离,确保信号不受到干扰
2025年,Intel 18A。 无论是技术沟通会议,还是ChinaJoy2021现场英特尔产品总监的分享,分享细节基本到Intel 20A就结束了,但实际上在2025年之后英特尔工艺制程还将迈入Intel 18A。这里将使用ASML最新的EUV光刻机High-NA,能够进行更精确的光刻 *** 作。英特尔表示他们已经成为ASML在High-NA方面的主要合作伙伴,现在已经开始测试第一台High-NA模型。
如果我们把上述的资料进行简略整理,能够看到一个很清晰的思路:
仍然需要注意的是,上面的时间节点只代表工艺节点可能准备就绪的时间,实际产品发布仍然会有变数。例如采用Intel 7工艺的Alder Lake是今年到明年初CES上市,而Sapphire Rapids则可能会到2022年。
为什么要给制程工艺重新命名?
这可能是大多数玩家最关心的一点。无论是英特尔还是对手三星、台积电,用更小的工艺密度名称来展现产品竞争力仍然是主流做法,如果英特尔使用类似台积电、三星奔放的工艺制程命名规则,可能实际 *** 作中市场部仍然需要表达在同等制程称呼下,英特尔的晶体管密度仍然高很多。
因此切换命名赛道可能才是一个最理智的做派,并且也能很好表达在工艺节点没有提升的情况下,实际表现仍然有明显的进步。以Intel 7为例,原来冗长的名称为10nm Enhanced Super Fin,相当于10nm Super Fin的进阶产品,听起来似乎英特尔又在挤牙膏了。
实际上并非如此,比如10nm到10nm Super Fin看似只加长了命名,实际上使用了新的SuperMIM电容器设计,并带来了1GHz以上的频率提升,因此10nm Super Fin到Intel 7之间也注定意味最终性能上的变化。从目前的初步判断来看,每一代工艺的进步,至少可以带来5%到10%的每瓦性能提升,变化很明显。
事实上这套命名思路已经被三星和台积电玩的炉火纯青,例如三星会在8LPP节点设计的基础上,不断的优化,进而衍生出6LPP、5LPE和4LPE,只有到3GAE的时候才会完成全新的技术迭代。同样,台积电10nm、7nm实际上是16nm工艺的优化设计,属于同一个工艺制程节点范围内。但如果看英特尔从Intel 7到Intel 3之间的发展,将会完成2个,以更快的速度完成工艺迭代,也就是英特尔重返巅峰的重要举措之一。
说个题外话,如果当年英特尔将14nm+改名为13nm,14nm++改名12nm,在台积电批量出货5nm产品之前,也许英特尔的处境看起来似乎也没什么太大的问题。
ASML扮演关键角色
在英特尔的报告中,我们会发现ASML无论在任何时间节点都变得非常关键。由于它是目前世界上唯一一家能够给英特尔提供生产机器的公司,英特尔也注定要在ASML上花费大量的资金,以及持续的技术投入。
在这个即将接近“上帝穹顶”的半导体工艺制程领域里,指望一家独大完全是异想天开,早在2021年,英特尔、三星、台积电都对ASML进行了投资,目的就是加速EUV开发,同时将300mm晶圆迁移到4500mm晶圆上。特别是英特尔的21亿美元投资使他们获得了ASML 10%的股份,并且英特尔也表示会持续投资直至增加到25%的占比。
有趣的是,ASML已经在2021年达到了2680亿美元,已经超过了英特尔的市值。
台积电在2020年8月份的一个报告中显示,ASML的EUV光刻机中,有50%用于前沿工艺,而直至现在英特尔还没有任何产品使用EUV制造,直至Intel 4中的后端制程(BEOL)才会加大力度。目前为止,ASML仍然有50台EUV光刻机延迟交付,并计划在2021年生产45到50台EUV光刻机,2022年产量达到50-60台,每台设备标价1.5亿美元,安装时间需要4到6个月。
ASML的缺货也可能给促使英特尔选择在Intel 4发力的原因,但更重要的是,ASML下一代EUV技术,即High-NA EUV将会成为英特尔的主要制造技术之一。NA与EUV光刻机的数值孔径相关,简单的说是在EUV光束击中晶圆之前,可以重新增强光束宽度,击中晶圆的光束越宽,强度就越大,刻画出的电路则越准确。
而如果依靠现在的工艺,一般会使用一维或二维光刻特征的双重图案化,亦或者四重图案化来实现类似的效果,但会严重的降低产量,而High-NA EUV则不会遇到这个问题,显然也更符合英特尔的预期。
如果一切顺利,英特尔可能会在2024年获得第一台High-NA EUV光刻机,并在随后逐步增加,数量越多,对英特尔的产量和优势也将越有利。
翻盘技术点1:RibbonFET
拥有更好的光刻机是远远不够的,芯片设计将会成为英特尔重返巅峰的另一个砝码。这里英特尔着重介绍了RibbonFET和PowerVias。
在目前的普遍认知中,常规FinFET一旦失去增长动力,整个半导体制造行业会转向GAAFET,也就是Intel 20A中提到的环绕栅极晶体管设计(GAAFET)。为了便于大家理解,英特尔将其命名为RibbonFET。
RibbonFET的特点是拥有多层灵活宽度的晶体管以驱动电流。与FinFET依赖于源极/漏极的多个量化鳍片和多个鳍片轨迹的单元高度不同,RibbonFET允许单个鳍片长度可变,并且允许针对每个独立单元进行功率、性能、面积优化,相当于每一个单元的模块都可以再定义电流,变化更为多样性。
资料来自三星
英特尔同样也是GAAFET的推动者之一,在RibbonFET的展示PPT中,可以看到同时使用了PMOS和NMOS器件,看起来像4堆栈结构。而堆栈越多,增加的工艺步骤也就会越繁琐。
不过与对手相比,英特尔的速度确实有些落后。台积电计划在2nm制程上过度到GAAFET,时间节点为2023年之后,三星则计划在3GAP制程上部署更多产品,时间节点同样为2023年。而英特尔的RibbonFET需要2024年上半年才会付诸实践,并且实际产品还需要再往后延期一段时间。
翻盘技术点2:PowerVias
PowerVias是Intel 20A另一个重要设计之一。
现代电路设计是从晶体管层M0开始,向上不断叠加大尺寸额外金属层,以解决晶体管和处理器缓存、计算单元等各个部分之间的布线问题。高性能处理器通常有10到20层金属层,最外层晶体管负责外部通讯。
而在PowerVias中,晶体管被放置于设计中间,晶体管一侧放置通讯线,允许芯片之间各个部分进行通讯,所有电源相关的设计放在另一侧,更确切的说,是晶体管背面,也就是我们常说的背面供电。
从整体来看,电源部分与通讯部分分开可以简化很多不必要的麻烦,比如电源供电导致信号干扰。另一方面按,更近的通讯距离能够降低能量损耗,运行方式更为高效。
当然,背面供电也并非十全十美,它对设计和制造都提出了更高的要求,例如在设计制造晶体管的时候,就必须更早的发现设计和制造缺陷,而不是现在可以供电与晶体管设计交替进行。同时由于供电部分的翻转意味着实际发热的时候,需要考虑热量对信号的影响等等。
不过背面供电技术在行业内其实被提出很多年,ARM和IMEC在2019年联合宣布在3nm工艺的ARM Cortex-A53实现类似的技术,特别是在现在设计下,工艺节点提升开始难以换来对等的高性能,改变设计思路无疑是合理的解决方案。
下一代封装:EMIB和Foveros
除了工艺节点,英特尔还需要推进下一代封装技术。高性能芯片需求再加上困难的工艺节点开发,都使得处理器不再是单一的硅片,而是无数更小的芯片、模块组合在一起,因此就需要更好的封装和桥接技术。英特尔EMIB和Foveros就是其中的两个。
EMIB:嵌入式多芯片互联桥接
桥接技术最早给2D平面芯片桥接设计的。通常而言,两个芯片之间的相互通讯最简单的方法是穿过基板形成数据通路。基板是由绝缘材料层组成的印刷电路,其中散布着蚀刻轨道和金属迹线。根据基板的质量、物理协议和使用标准,可以得出传输数据时达到电力、带宽损耗等等,这是最便宜的选择。
基板的进阶形式是,两个芯片通过一个中介层桥接。中介层通常是一大块硅片,面积足以让两个芯片贴合。类似于插座一般,硅片对应不同芯片会提供相应的接口,并且由于数据从硅片移动到硅片,功率损失要比基板小得多,带宽也更高,缺点是作为中介层的硅片也需要额外制造,制程通常在65nm以上,并且所涉及的芯片要足够小,否则成本降不下来。
英特尔EMIB则正好是中介层硅片以及基板的融合体。英特尔没有使用大型的中介层,而是用小硅片将其嵌入到基板中,从而变成具备插口的桥接器,这使得桥接性能不会受到硅片成本过大,以及基板效率过低的影响。
但EMIB嵌入基板其实并不容易,英特尔已经给为此花费了数年时间和资金完善这项技术,并且桥接过程中必然会存在良品率的问题,即使每个芯片桥接都能达到99%的林频率,一旦多个芯片同时桥接,则会下降到87%。
目前已经投放市场的EMIB技术有几款产品,包括Stratix FPGA 和 Agilex FPGA 系列,以及前段时间在消费端火热的Kaby Lake-G,将英特尔CPU和AMD GPU融合。接下来英特尔还计划在超级计算机图形处理器Ponte Vecchio、下一代至强Sapphire Rapids,2023年消费级处理器Meteor Lake,以及GPU相关芯片使用这项技术。
在EMIB线路图上,英特尔计划在未来几年内继续缩小EMIB的触点间距,以获得更多的连接性能。2017年发布的第一代EMIB触点间距为55微米,第二代EMIB将达到45微米,第三代EMIB则可能达到35微米。
Foveros:真正的叠叠乐
在2019年,英特尔在Lakefield上第一次使用了Foveros芯片到芯片的堆叠技术,虽然Lakefield这款低功耗移动处理器已经停售,但是芯片到芯片堆叠技术开始陆续在其他产品中推广开来。在很大程度上,芯片堆叠与EMIB部分中介层技术相似,所不同的是顶部的内插器、基片需要上一层芯片的完整有源供电。例如Lakefield处理器部分使用的是10nm制程,但诸如PCIe通道、USB接口、安全性以及IO相关则通过22FFL低功耗制程连接。
虽然这仍然属于EMIB技术的2D缩放范畴,但实际上这个 *** 作已经完成了完整的3D堆叠,并且功率损失更小,连接性更好,第一代Foveros触点间距为50微米,而第二代Foveros则可以做到36微米触点间距,连接密度增加一倍,最快会在消费级处理器Meteor Lake用上。
如果你听说过英特尔封装技术,缩写ODI,即Omni-Directional Interconnect可能听说过,这是一个允许使用悬臂硅的封装技术名称,在Foveros上变成了第三代Foveros Omni。
Foveros Omni使得原本第一代Foveros的顶部芯片尺寸限制被取消,可以允许每层多个尺寸芯片叠加。因为Foveros Omni允许铜柱通过基板一直延伸到供电部分,因此解决了大功率硅通孔(TSV)在信号中造成局部干扰的窘境。此时Foveros Omni触点间距降低到25微米。如果一切顺利,Foveros Omni将会在2023年为批量生产做好准备。
紧接着第四代Foveros Direct能够将触点间距降到的10微米,密度是Foveros Omni的六倍,并且使用全铜连接,拥有更低的功耗和电阻,推出的时间也在2023年,与Foveros Omni同步,以应对不同成本和情况的解决方案。
写在最后:性能突破终有时
英特尔给我们描绘了一个2025年的芯片制造的宏伟蓝图,而推动庞大计划背后可能会有数百家供应商与客户的谈判,而为了推进这项计划,英特尔也不惜重金聘请以往在英特尔就职的专家和研究人员,进而推进当前的研究进度。
如果想从每瓦功率上有所突破,唯有不断的将工艺、封装、设计向前推进,同时考虑到客户和市场的实际需求,做到多方面平衡相当不容易,但至少,我们看到了英特尔对重返巅峰充满决心。
英特尔公司( Intel Corporation )
网址:http://www.intel.com/ 是全球最大的半导体芯片制造商,它成立于1968年,具有35年产品创新和市场领导的历史。1971年,英特尔推出了全球第一个微处理器。这一举措不仅改变了公司的未来,而且对整个工业产生了深远的影响。微处理器所带来的计算机和互联网革命,改变了这个世界。
2002年2月,英特尔被美国《财富》周刊评选为全球十大“最受推崇的公司”之一, 名列第九。2002年接近尾声,美国《财富》杂志根据各公司在2002年度业务的表现、员工水平、管理质量、公司投资价值等六大准则排出了“2002年度最佳公司”。在这一排行榜上,英特尔公司荣登全球榜首。同时,在“2002全球最佳雇主”排行榜上,英特尔公司名列第28位。
2003年5月,《哈佛商业周刊·中文版》公布“2002年度中国最佳雇主”名单,英特尔(中国)有限公司名列第八。这是由全球著名人力资源公司HewittGlobalHRConsultingFirm*和《哈佛商业周刊·中文版》通过一项联合举办的企业内部员工调查结果评选出来的。2002年,英特尔公司的收入为268亿美元,净收入为31亿美元。2003年7月18日,英特尔公司成立35周年。英特尔公司首席执行官贝瑞特博士回顾说:“35年来,我们不懈地追求优秀与完美,这为我们能够不断推出创新理念并保持创新能力奠定了坚实的基础,也使得英特尔能在全球竞争最为激烈的行业中始终处于领先地位。我们的努力让世界发生了翻天覆地的变化,我们还将继续改变世界的未来,这也正是我们今天值得庆祝的。”
英特尔为全球日益发展的计算机工业提供建筑模块,包括微处理器、芯片组、板卡、系统及软件等。这些产品为标准计算机架构的组成部分。业界利用这些产品为最终用户设计制造出先进的计算机。今天,互联网的日益发展不仅正在改变商业运作的模式,而且也改变着人们的工作、生活、娱乐方式,成为全球经济发展的重要推动力。作为全球信息产业的领导公司之一,英特尔公司致力于在客户机、服务器、网络通讯、互联网解决方案和互联网服务方面为日益兴起的全球互联网经济提供建筑模块。
英特尔在中国的机构英特尔在中国(大陆)设有13个代表处,分布在北京、上海、广州、深圳、成都、重庆、沈阳、济南、福州、南京、西安、哈尔滨、武汉。公司的亚太区总部在香港特别行政区。英特尔在中国亦设有研究中心,即英特尔中国实验室,由4个不同研究中心组成,于2000年10月宣布成立。该中国实验室主要针对计算机的未来应用和产品的开发进行研究,旨在促进中国采用先进技术方面的进程,从而进一步推动国内互联网经济的发展。此外,英特尔中国实验室还负责协调该实验室与英特尔全球其他实验室的研究协作,以及资助国内高校和研究机构的研究项目的开发工作。英特尔公司全球副总裁兼首席技术官帕特·基辛格直接领导英特尔中国实验室的工作。
英特尔在中国的使命英特尔公司在中国的业务重点与其全球业务重点相一致,即成为全球互联网经济的构造模块的杰出供应商。除此之外,英特尔始终致力于成为推动中国信息技术发展的基石。在中国,这一战略可从英特尔在中国的一系列活动中得到反映:*技术启动:英特尔在中国设有英特尔中国实验室,由4个不同研究领域的实验室组成。如英特尔中国实验室,隶属于英特尔微处理器研究实验室,主要研究面向微处理器和平台架构的相关工作,推动英特尔处理器架构(IA)技术在业界的领导地位。
具体研究领域包括音频/视频信号处理和基于PC的相关应用,以及可以推动未来微结构和下一代处理器设计的高级编译技术和运行时刻系统研究。另外还有英特尔中国软件实验室、英特尔架构开发实验室、英特尔互联网交换架构实验室、英特尔无线技术开发中心。除此之外,英特尔还与国内著名大学和研究机构,如中国科学院计算所针对IA-64位编译器进行了共同研究开发,并取得了可喜的成绩。
2002年10月,英特尔公司宣布在深圳成立英特尔亚太区应用设计中心(ADC)。该中心面向中国计算和通信行业的OEM与ODM厂商,旨在满足他们对世界一流设计与校验服务的需求,并帮助他们为客户开发更出色的产品英特尔亚太地区应用设计中心(深圳)将为亚太区包括深圳和中国其它地区的客户就近提供先进的产品开发和技术支持服务,以协助亚太地区及中国的客户强化其在全球的竞争实力,并且促进这些客户相互间的合作。英特尔还通过战略投资事业部(IntelCapital)在中国进行IT技术方面的投资,以促进中国型技术,如无线通讯技术等方面的发展,从而促进全球互联网经济的发展。
迄今为止,英特尔的战略投资事业部已向亚太地区进行风险投资近6亿美元,其中在中国的投资近30家。*技术生产与制造:今天,英特尔在上海设有投资5亿美元的芯片测试和封装的工厂,为快闪存储器、I845芯片组和奔腾4处理器提供基于0.13微米工艺的世界一流的封装与测试,并为全球提供最高性能处理器产品;同时,也培养了大批的国内掌握世界一流芯片生产制造技术的知识工人。市场教育及应用普及:英特尔公司始终把协助推动中国计算机工业和互联网经济的发展作为公司在中国的首要策略。英特尔(中国)有限公司从2000年开始赞助ISEF中国区联系赛事。这一赛事被称为“中国青少年科学技术与创新大赛”,由中国科学技术协会*主办。2001年,中国派出16名学生参加在美国加州硅谷举行的第52届英特尔国际科学与工程大奖赛*,赢得了17项大奖,包括奖品、奖金及奖学金共计87000美元。2002年,英特尔ISEF在中国区的联系赛事在各地共吸引了1500万名中学生参加,其中有21名成绩优异的学生将被选派赴美参加5月在肯塔基州举办的第53届英特尔国际科学与工程大奖赛。2000年7月,英特尔未来教育项目在中国启动。
经过一年的时间,到2002年底,拟在中国共培训教师达100,000名,该项目已经在全国的18个省市展开,北京市、长春市、重庆市、甘肃省、海南省、河北省、内蒙古自治区、江苏省、上海市、陕西省、天津市、新疆维吾尔自治区、浙江省、淄博市开展实施了,得到中国教育部的大力支持和肯定,更获得各地教委和参加培训的老师的热烈欢迎。另外,为了更好地普及电脑教育,英特尔自1997年开始与国内电脑厂商合作,在全国16个城市开设了“英特尔电脑小博士工作室“,分别分布在北京、上海、广州、深圳、成都、天津、西安、沈阳、青岛、温州、杭州、济南、西藏、哈尔滨、无锡、南京,共培训家庭130万人次。*广泛的业界合作:英特尔自1985年进入中国以来,便将“与中国信息产业共同成长”视为己任。与国内OEM厂商、独立软件开发商、通讯设备制造商、解决方案供应商和无线通信厂商进行了密切广泛的合作。自2000年至今,英特尔每年在中国召开春秋两季的“英特尔信息技术峰会”(IntelDeveloperForum),与国内业界及时分享信息技术发展的趋势。2003年3月12日,英特尔在中国与全球同步推出了英特尔?迅驰?移动计算技术,它为移动计算的笔记本电脑用户提供了史无前例的、完全摆脱线缆束缚的“无线自由”的集计算和通讯之融合的体验。
INTEL微处理器的里程碑
1971 年: 4004 微处理器
4004 处理器是英特尔的第一款微处理器。这一突破性的重大发明不仅成为 Busicom 计算器强劲的动力之源,更打开了让机器设备象个人电脑一样可嵌入智能的未来之路。
1972 年: 8008 微处理器
8008 处理器拥有相当于 4004 处理器两倍的处理能力。《无线电电子学》 杂志 1974 年的一篇文章曾提及一种采用了 8008 处理器的设备 Mark-8,它是首批为家用目的而制造的电脑之一——不过按照今天的标准,Mark-8 既难于制造组装,又不容易维护 *** 作。
1974 年: 8080 微处理器
世界上第一台个人电脑 Altair 采用了 8080 处理器作为大脑——据称 “Altair” 出自电视剧 《星际迷航 Star Trek》,是片中企业号飞船的目标地之一。电脑爱好者们花 395 美元就能购买一台 Altair。仅短短几个月时间,这种电脑就销售出了好几万台,创下历史上首次个人电脑延期交货的纪录
1978 年: 8086-8088 微处理器
英特尔与 IBM 新个人电脑部门所进行的一次关键交易使 8088 处理器成为了 IBM 新型主打产品 IBM PC 的大脑。8088 的大获成功使英特尔步入全球企业 500 强的行列,并被 《财富》 杂志评为“70 年代最成功企业”之一。
1982 年: 286 微处理器
英特尔 286 最初的名称为 80286,是英特尔第一款能够运行所有为其前代产品编写的软件的处理器。这种强大的软件兼容性亦成为英特尔微处理器家族的重要特点之一。在该产品发布后的 6 年里,全世界共生产了大约 1500 万台采用 286 处理器的个人电脑。
1985 年: 英特尔386™ 微处理器
英特尔386™ 微处理器拥有 275,000 个晶体管,是早期 4004 处理器的 100 多倍。该处理器是一款 32 位芯片,具有多任务处理能力,也就是说它可以同时运行多种程序。
1989 年: 英特尔486™ DX CPU 微处理器
英特尔486™ 处理器从真正意义上表明用户从依靠输入命令运行电脑的年代进入了只需点击即可 *** 作的全新时代。史密森尼博物院国立美国历史博物馆的技术史学家 David K. Allison 回忆说,“我第一次拥有这样一台彩色显示电脑,并如此之快地在桌面进行我的排版工作。”英特尔486™ 处理器首次增加了一个内置的数学协处理器,将复杂的数学功能从中央处理器中分离出来,从而大幅度提高了计算速度。
1993 年: 英特尔 奔腾 处理器
英特尔 奔腾 处理器能够让电脑更加轻松地整合 “真实世界” 中的数据(如讲话、声音、笔迹和图片)。通过漫画和电视脱口秀节目宣传的英特尔 奔腾 处理器,一经推出即迅速成为一个家喻户晓的知名品牌。
1995 年: 英特尔 高能奔腾 处理器
于 1995 年秋季发布的英特尔 高能奔腾 处理器设计用于支持 32 位服务器和工作站应用,以及高速的电脑辅助设计、机械工程和科学计算等。每一枚英特尔 高能奔腾 处理器在封装时都加入了一枚可以再次提升速度的二级高速缓存存储芯片。强大的英特尔 高能奔腾 处理器拥有多达 550 万个晶体管。
1997 年: 英特尔 奔腾 II 处理器
英特尔 奔腾 II 处理器拥有 750 万个晶体管,并采用了英特尔 MMX™ 技术,专门设计用于高效处理视频、音频和图形数据。该产品采用了创新的单边接触卡盒(S.E.C)封装,并整合了一枚高速缓存存储芯片。有了这一芯片,个人电脑用户就可以通过互联网捕捉、编辑并与朋友和家人共享数字图片;还可以对家庭电影进行编辑和添加文本、音乐或情景过渡;甚至可以使用视频电话通过标准的电话线向互联网发送视频。
1998 年: 英特尔 奔腾 II 至强 处理器
英特尔 奔腾 II 至强 处理器设计用于满足中高端服务器和工作站的性能要求。遵照英特尔为特定市场提供专属处理器产品的战略,英特尔 奔腾 II 至强 处理器所拥有的技术创新专门设计用于工作站和服务器执行所需的商业应用,如互联网服务、企业数据存储、数字内容创作以及电子和机械设计自动化等。基于该处理器的计算机系统可配置四或八枚处理器甚至更多。
1999 年: 英特尔 赛扬 处理器
作为英特尔面向具体市场开发产品这一战略的继续,英特尔 赛扬 处理器设计用于经济型的个人电脑市场。该处理器为消费者提供了格外出色的性价比,并为游戏和教育软件等应用提供了出色的性能。
1999 年: 英特尔 奔腾 III 处理器
英特尔 奔腾 III 处理器的 70 条创新指令——因特网数据流单指令序列扩展(Internet Streaming SIMD extensions)——明显增强了处理高级图像、3D、音频流、视频和语音识别等应用所需的性能。该产品设计用于大幅提升互联网体验,让用户得以浏览逼真的网上博物馆和商店,并下载高品质的视频等。该处理器集成了 950 万个晶体管,并采用了 0.25 微米技术。
1999 年: 英特尔 奔腾 III 至强 处理器
英特尔 奔腾 III 至强 处理器在英特尔面向工作站和服务器市场的产品基础上进行了扩展,提供额外的性能以支持电子商务应用及高端商业计算。该处理器整合了英特尔 奔腾 III 处理器所拥有的 70 条 SIMD 指令,使得多媒体和视频流应用的性能显著增强。并且英特尔 奔腾 III 至强 处理器所拥有的先进的高速缓存技术加速了信息从系统总线到处理器的传输,使性能获得了大幅提升。该处理器设计用于多处理器配置的系统。
2000 年: 英特尔 奔腾 4 处理器
基于英特尔 奔腾 4 处理器的个人电脑用户可以创作专业品质的电影;通过互联网发送像电视一样的视频;使用实时视频语音工具进行交流;实时渲染 3D 图形;为 MP3 播放器快速编码音乐;在与互联网进行连接的状态下同时运行多个多媒体应用。该处理器最初推出时就拥有 4200 万个晶体管和仅为 0.18 微米的电路线。 英特尔首款微处理器 4004 的运行速率为 108KHz,而现今的英特尔 奔腾 4 处理器的初速率已经达到了 1.5GHz,如果汽车的速度也能有同等提升的话,那么从旧金山开车到纽约只需要 13 秒。
2001 年: 英特尔 至强 处理器
英特尔 至强 处理器的应用目标是那些即将出现的高性能和中端双路工作站、以及双路和多路配置的服务器。该平台为客户提供了一种兼具高性能和低价格优势的全新 *** 作系统和应用选择。与基于英特尔 奔腾 III 至强 处理器的系统相比,采用英特尔 至强 处理器的工作站根据应用和配置的不同,其性能预计可提升 30% 到 90% 左右。该处理器基于英特尔 NetBurst™ 架构,设计用于为视频和音频应用、高级互联网技术及复杂 3D 图形提供所需要的计算动力。
2001 年: 英特尔 安腾 处理器
英特尔 安腾 处理器是英特尔推出的 64 位处理器家族中的首款产品。 该处理器是在基于英特尔显式并行指令计算(EPIC)设计技术的全新架构之基础上开发制造的,设计用于高端、企业级服务器和工作站。该处理器能够为要求最苛刻的企业和高性能计算应用(包括电子商务安全交易、大型数据库、计算机辅助的机械工程以及精密的科学和工程计算)提供全球最出色的性能。
2002 年: 英特尔 安腾2 处理器 Intel Pentium 4 /Hyper Threading处理器
英特尔 安腾 2 处理器是安腾处理器家族的第二位成员,同样是一款企业用处理器。该处理器家族为数据密集程度最高、业务最关键和技术要求最高的计算应用提供英特尔 架构的出色性能及规模经济等优势。该处理器能为数据库、计算机辅助工程、网上交易安全等提供领先的性能。
英特尔推出新款Intel Pentium 4处理器内含创新的Hyper-Threading(HT)超执行绪技术。超执行绪技术打造出新等级的高效能桌上型计算机,能同时快速执行多项运算应用, 或针对支持多重执行绪的软件带来更高的效能。超执行绪技术让计算机效能增加25%。除了为桌上型计算机使用者提供超执行绪技术外,英特尔亦达成另一项计算 机里程碑,就是推出运作时脉达3.06 GHz的Pentium 4处理器,是首款每秒执行30亿个运算周期的商业微处理器,如此优异的性能要归功于当时业界最先进的0.13微米制程技术,翌年,内建超执行绪技术的 Intel Pentium 4处理器时脉达到3.2 GHz。
2003 年: 英特尔 奔腾 M /赛扬 M 处理器
英特尔 奔腾 M 处理器,英特尔 855 芯片组家族以及英特尔 PRO/无线 2100 网卡是英特尔 迅驰™ 移动计算技术的三大组成部分。英特尔 迅驰™ 移动计算技术专门设计用于便携式计算,具有内建的无线局域网能力和突破性的创新移动性能。该处理器支持更耐久的电池使用时间,以及更轻更薄的笔记本电脑造形。
2005年 :Intel Pentium D 处理器
首颗内含2个处理核心的Intel Pentium D 处理器登场,正式揭开x86处理器多核心时代。
2006年:Intel Core 2 Duo / 赛扬 Duo 处理器
Core微架构桌面处理器,核心代号Conroe将命名为Core 2 Duo/Extreme家族,其E6700 2.6GHz型号比先前推出之最强的Intel Pentium D 960 (3.6GHz)处理器,在效能方面提升了40%,省电效率亦增加40%,Core 2 Duo处理器内含2.91亿个晶体管。
2007年: Intel 四核心服务器用处理器(即将推出)
英特尔一位高级官员周五透露,该公司可能在2007年初推出其首批四核心处理器,以夺回服务器市场的份额。据悉,英特尔这款代号Clovertown的新处理器将集成四个处理器于一体,让电脑能够更迅速处理数据或者同时运行更多应用程序,而较单核心处理器更省电。Clovertown是针对运行企业网络及支持互联网站点的服务器设计的。采用它的服务器将带有两个处理器插座,意味着电脑可以用多达八个内核处理数据。英特尔没有透露是否全部四个内核都在单一芯片上,或者Clovertown会采用两个捆绑在一起的双核心处理器。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)