电晶体自发明至今已有二十五个年头了,由于这个划时代的贡献,使得电子产品打入整个人类的生活之中成为一种非常大众化的玩意儿。去年十二月间,美国电子工业界还举行了一个二十五周年纪念大会以庆祝这个利用固态物质取代真空管的伟大贡献。回顾半导体电子零件的发展史,我们发现一直到一九六○年,电子仪器依然是用像铅笔上橡皮擦那样大小(或更大)的电晶体一个一个连接起来的,而且每个电晶体的平均价格高达美金一元。一九六○年后期,科学家开始设计各种不同的方法在矽的单晶片(single crystal wafer)上做成部份或整套的电子线路,这就是大家所熟知的积体电路(Integrated Circuit)一般习稳IC。早期的积体电路在大约若干毫米平方的晶片上只能包含约一打左右的电子元件,但是今日大量生产的积体电路上已含有约三千个电子元件,而且其中大部份是电晶体,目前已有某些高级积体电路内拥有电晶体等元件达一万个之多,我们似乎可以预期在一九八○年代里将会有包含上百万电晶体元件的积体电路出现〔注一〕。
传统的电晶体我们称之为双极电晶体(bipolar transistor),由於此种电晶体生产程序上的先天限制,使得我们很难在一个晶片上制出元件密度很高的积体电路出来,因此目前所谓的LSI(Large Scale Integration大型积体)都是用MOS方法制造的,所谓MOS乃是Metal Oxide Semiconductor诸英文字的缩写(参考图四),利用此种技术可以把积体电路做得更小且其包含的元件更多。而且在制造的程序上MOS的制作也要比制造传统电晶体简单。我们都知道一个产品要能在市场上竞争,不外乎品质优异,价格低廉, MOS的制作程序简单故成本较低。一个拥有200个电晶体的LSI上每个电晶体的平均价格只有美金一分而已,而且一般咸信在十年中每个电晶体的平均价格可以再降低30倍之谱,那时每个电晶体的价格将和书面上的烫金字一样的便宜(参考图三)。除此而外,积体电路信赖度(reliability)的增加,体积和重量的减少也是使积体电路受到普遍重视与喜好的原因之一,当然这些原因较诸成本的降低就显得无足轻重了。
要使成本降低,只有大量生产,积体电路的制造即采大量生产的方式。一般的方法是同时把许多晶片经过一系列的化学及冶金处理,继以照相腐刻(phtolithography),扩散(diffusion)等程序,在每个晶片上往往可制出数百个积体电路。但尽管科学家想尽办法使每个晶片保持均匀相同的性质,甚至在每个制周程序上都注意这个问题,晶片的性质总是无法保持一定的规格,每个晶片上往往又会有许多缺陷(defect)及差排(dislocation),或在晶片表面上附有某些不需要的物质;更由於积体电路中的精度是以微米(10-4cm)为单位的,因此一个肉眼都看不见的缺陷往往破坏了整个积体电路的特性,所以上述大量生产出来的IC在经过品质检验时往往会有部份被淘汰掉,因此在IC的制造上会有所谓的“成功率”(yield)问题。一个高级的IC在生产的初期其成功率往往是很低的,但从摸索实验的经验中,成功率往往能很快的被提高。近年来由於精密测量及控制仪器方面的改进,已使IC制造程序获得很好的改善;也因此科学家乃能制造更复杂的积体电路。当然积体电路作得越复杂密集,其成功率也相对的越低,因此除非制造程序上有个很大的突破,否则成本的降低总会达到某个极限的。
电晶体的起源
在MOS积体电路上的电晶体是一种利用场效应(field effect) *** 作的场效电晶体,一般简称FET(Field Effect Transistor),其 *** 作原理是在垂直於晶片表面的方向上加一电场来控制源极(source)与曳极(drain)之间的电导(conductance)。其实这个效应早在一九三○年即由李利费尔德(Julius, Edgar Lilienfeld)所发现(他在一九三五年取得场效应元件的专利权),但由於那时候晶体表面及薄膜(thin film)方面的物理知识相当缺乏,所以场效应的元件无法制成,而且那时期由於大部份科学家都致力於真空管方面的研究发展,场效应方面的理论也一直乏人去加以深入探讨。
大概在一九三○年末,有一位在贝尔实验室工作的年轻物理学家薛克利(William B. Shockley)对於利用固态物质来制造电子元件的可能性发生很大的兴趣,当初他致力於发展一种固态电子元件作为电话与电话间的交换系统以取代传统的电动机械开关(electomechanical switch)。薛克利及一些先进人士均深信电话开关在不久的将来会被大量需要,如果仍用真空管的话那将是非常不经济的,而且真空管的信赖度又很低。薛克利在薛基(Walter Schottky)所研究的金属与半导体界面的整流(交流变直流)现象的文章中发现我们可以利用半导体中空间电荷区(space charge region)〔注二〕,宽度的改变来放大信号(参考图二)。他深信利用此层空间电荷区可以像开关阀一样控制半导体内的电导而收到控制二极间电流大小的效果,这和真空管利用栅极的电压来控制二极间电流的原理非常相似。在一九三九年时,薛克利就曾想利用铜和氧化铜来试制此种电子元件,但是不幸没有成功。
二次大战后,薛克利再度回到贝尔实验室工作,他和巴定(John Bardeen)、卜勒登(Walter H Brattain)〔注三〕二人开始研究锗(Ge)半导体中的场效放大作用(因当时锗的物理性质远较氧化铜了解)。他们对半导体表面接点(surface contact)及空间带电区的研究终於1947年发明了“点触电晶体”(point contact transistor),虽然此种点触电晶体无法大量生产,但无论如何他们证实了利用半导体制电子元件的构想,剩下的似乎只是技术上的问题而已。果然在1948年“接面电晶体”(junction transistor)就被制造出来了。接面电晶体或称双极电晶体共有二个接面(junction);这二个接面把半导体分为三个区域分别称为射极(emitter),基极(base)及集极(collector),从射极流向集极的电流可以用基极的微小讯号来控制,因此有讯号放大的作用。
虽然电晶体的发明使科学界兴奋了一阵子,但在薛克利的领导下,贝尔实验室的科学家对场效应的兴趣并未丝毫降低。1948年皮尔逊(Gerald L. Pearson)和薛克利在矽晶片的pn接面(p-n juncticn)〔注四〕中发现场效应现象,1952年薛克利发表了场效电晶体的理论。就在次年(1953)场效电晶体由戴斯(George C. Dacey)和露斯(M. Ross)二位设计出来了,但那时的场效电晶体是利用电场来控制 Ge 中的导电现象。由於它的价格相当昂贵,而且其较一般电晶体的优点有限,所以只在一些特殊场合中才应用此种场效电晶体。
科学家发现矽对温度具有较高的稳定性,而且在制造上也较易控制,所以其成本较低。大约在1950年以后,Si即逐渐取代Ge作为电晶体的材料。科学家对矽晶体表面的研究进步相当神速,元件的制造技术也是日新月异;因此矽与二氧化矽的界面现象也逐渐被了解并能被控制,制造出来的电子元件其稳定度也越来越高。1960年贝尔实验室的江(Dawon Kahung)及艾特拉(John Atalla)用一个绝缘的电极(他们称之为闸(gate))在p-n接面之间引发一个导电的通道(channel)而来控制晶体中的导电状况。根据这个构想,场效应电晶体(FET)终於在二年后由RCA(美国无线电公司)的赫富斯顿(Stephen R. Hofstein)及海曼(Frederick P. Heiman)设计出来。其构造是在矽晶片上不同的二个地方引入n型或p型杂质做为源极和曳极,二极之间的晶片上再长一层二氧化矽的绝缘物,然后在SiO2上镀上一层金属作为闸极。从纵剖面来看,其构造是金属—氧化层—半导体,因此称为MOS电晶体(Metal-Oxide-Semiconductor transistor)。
我们以n型半导体为例来说明MOS的 *** 作原理。当在源极与曳极之间赋予一个电压时,二者之间导电的良好与否可由通道上电荷的多少来决定,而通道中之电荷可由闸极的电压来引发(induce)。从电磁学的知识,我们都知道若在闸极上赋予一些电荷则在闸极下的半导体会引发一些符号相反的电荷,这些电荷即可构成所谓的通道,此通道的宽度(亦即所引发电荷的多少)与闸极的电压成比例,因此我们可以用闸极的电压来控制流经源极与曳极之间电流的大小。实际上若闸极上所加的电压未超过所谓临限电压(threshold voltage)时,源极与曳极之间的电导仍然很小,但一旦超过临限电压后,则其电导乃急骤增加,因此二者之间的电流乃急骤增加。N型半导体上闸极的电压是负的,故所引发的电荷是正的〔注五〕,这种通道称为p-通道加强型电晶体(p-channel enhancement transistor);若半导体是p型而且其源极与曳极是n型,则闸极上的电压应该用正的,而且引发出来的电荷是负的,此时的电晶体则称n-通道加强型电晶体(n-channel enhancement transistor)。还有一种 FET其构造与上述大致相同,唯当闸极电压为零时源极与曳极之间已存在一个带电通道(此通道的电荷与源极及曳极者相同)。当闸极加以一个电压时反而使通道内的电荷减少(例如原来是n-通道,加上一个负电压后由於电场作用使通道内电子数减少),因此二极间的电流在闸极电压为零时最大,电压增加电流反而减小,此种电晶体由其通道电荷的不同分别称为n-通道空乏型电晶体及p-通道空乏型电晶体(n-channel depletion transistor and p-channel depletion transistor),但在实际应用上由於加强型FET具有较大的可塑性,因此在线路上大多是用加强型FET。
MOS电晶体
前面我们曾说过MOS电晶体在制造程序上远较传统的电晶体简单。因此若制造MOS的积体电路当然要比用老式电晶体积体电路简单省事得多。就拿一般的反相器(inverter)来说吧,如果用接面电晶体的话需要四个不同的扩散步骤并要用六套面幕〔注:面幕之作用可参阅科月四卷十月号离子深植技术一文〕,但若用MOS电晶体的话则只要一次扩散步骤及五套面幕即可。正因为上述的优点加上成本低廉,使得1960年以来MOS方面的研究受到普遍的重视。科学家花了好几年的时间去研究并解决矽晶片与氧化矽界面间的不稳定问题及氧化矽本身的特性。过去六年来,MOS积体电路已经从完全没有的状况到今年总值二亿五仟万美元的四千八百万个积体电路,预期今年用双极电晶体的积体电路大概有四亿个之多,(总值七亿二千万美元),读者可以由上面的数字发现MOS积体电路的成长速率是相当惊人的。
MOS和真空管一样用电压来控制电流的大小,并且有很高的输入阻抗(input impedence),其输出与输入之比也相当的线性(linear),但接面电晶体乃是利用电流来控制的,因此其特性不若MOS那般线性,而且其输入阻抗也远较MOS小。其次MOS不论在导电状况或不导电状况其所消耗的能量都远较接面电晶体小。但是到目前为止,我们所制造出来的MOS电晶体其运作速率没有一般的电晶体快,然而这个速率上的差异主要是由於MOS的制造技术尚未成熟所致,而不是MOS本身在理论上受到什麼限制。依目前的情况来说,由於二者各有利弊,因此设计仪器的工程师往往会为二者的取舍犹豫不决,但笔者个人深信在七十年代的末期在数位电子线路中MOS势必会占一个较重要的角色。
目前有数以百计的各型MOS积体电路被应用在桌上型电子计算器(desk calculator)及各种电子设备中,包括最简单的逻辑线路到含有记忆单元及逻辑的积体电路。除了需要高速率的电子计算机以外,几乎所有新的电子设备内中都多多少少有些MOS线路在内。
MOS计算器
MOS在商业上的最大应用大概要推桌上型计算器(desk calculator)及袖珍型计算器(pocket calculator)了。在 MOS没有被应用以前,桌上型计算器大都用电动机械零件所设计而成,因此每个计算器的成本大概在美金五百元到一千元之间。后来双极电晶体的积体电路应世后,品质方面当然改进了不少,但若以所化的成本而论,这种改进并不很大。但到1969年时,我们已能把计算器中所有的计算单元设计在若干片积体电路上了,再只三年的功夫,现在我们已可把整个复杂的计算器线路设计在一片MOS的积体电路上(参考图四)。利用此种MOS积体电路使得计算器的成本大大的降低,现在一个高效率的计算器只要化50~200元美金就可买到,可以深信在不久的将来此种计算器的价格将更便宜,品质将更好。
虽然由於MOS的运作速率不够快,因此尚无法应用在大计算机的中央处理系统内,但MOS积体电路的价格越来越低,目前已可和磁圈记忆器相竞争,相信将来计算机中的记忆单元均将为MOS取代。目前MOS中每个数元(bit)的价格大约是0.8分美元。最近又用MOS制出随意出入记忆器(random access memory),其价格与磁圈记忆器相当,而其优点是所需要的电源较小,而且产生出来的热量也很少,因此设计计算机时可以把记忆器中记忆单元的密度设计得很高。另外用磁圈作记忆器时需要一种高品质的线,为了节省起见这种高品质的线往往由所有的磁圈共用,无形中限制了计算机的功能。但是用MOS 记忆器时由於其取存资料可用积体电路取代,所以计算机的设计者可以自由安排其记忆器,使整个计算机有更好的效率,而不必顾虑成本问题。虽然生产磁圈记忆器的厂商正在努力和MOS记忆器竞争,但我深信,MOS取代磁圈记忆器只是时间的问题而已了。
何谓PMOS,NMOS,及CMOS
回顾半导体技术的发展史,我们可以看到由於对半导体材料,结构以及线路方面的高度研究发展,整个半导体的技术一直在改进中。在MOS这方面,其应用所及的范围已相当广泛,但犹在扩大中。最早在市场上的MOS积体电路是p一通道加强型(PMOS),目前此种型式的MOS约占所有MOS 积体电路的80%,这大概是PMOS的生产程序较易被控制的原因吧!但是现在的科技已经可以制造别种类型的MOS,例如NMOS(n-通道加强型MOS)及NMOS与PMOS合起来应用的CMOS(Complementary MOS)。由於电子较电洞(hole)更易移动,所以NMOS的运作速率要比PMOS快约2~3倍,因此在有些速率因素比较重要的部份采用NMOS以使整个积体电路得到最佳效果。
CMOS目前正受到广泛的重视,而且很可能变成所有元件中最重要者。把n通道和p通道二个组合在一起的线路可能是目前所有积体电路中最好的一种。最简单的CMOS线路是一个反相器(参阅图五),它是由PMOS和NMOS串联在一起组成的,目前此种线路是所有半导体元件中消耗功率最少的,把这种反相器线路做适当组合,我们可以设计出许多有用而消耗功率很小的线路。例如一个常被用为计时的十四阶二进位计数器(14-stagebinary counter),在5伏特电压时只消耗2.5微瓦(10-6瓦特)的能量,大概只有用PMOS或双极电晶体积体电路时的十万分之一,这在一些电源很有限的仪器上真是太重要了,任何一个以电池为电源的装置都该考虑使用CMOS。
PMOS和NMOS也可以用并联的方法接在一起以构成传递开关(transmission switch),此种开关可双方向的通过数位信号(digital signals)或类比信号(analogue signals)。理论上此种线路也可以用NPN和PNP电晶体组合得到,但这种线路非常不经济,而且用低廉的CMOS还有一个好处是可以把杂音去掉,因此在杂音信号很强的地方更应该使用CMOS。线路设计者发现我们可以用反相器线路和传递开关线路适当组合而得到我们所需要的任何逻辑线路及开关线路。
积体电路——尤其是CMOS——在商业上一个很大的应用是制造电子表或电子钟,此种电子钟表的准确度非任何机械钟表所能及。它是利用电子计数线路将一种石英的天然振动频率分成好几种电子信号并以之驱动钟表上的针,或甚至将这些信号直接接到液晶(liqguid crystal)、发光二极体(light emitting diode)之类的电光数位元件(electro-optic digital device)上。这样我们可以从指示数字中直接得知时间,看来这种价廉物美的电子表势必会改变整个的钟表工业了。
在理论上,MOS的运作速率应该只和电荷载子(charge carrier)的能动度(mobility)及载子所经过的距离有关,那麼其运作速率应该和最快的电晶体差不多才是。但是目前我们所做出来的MOS其运作速率远较双极式电晶体慢,这又是什麼原因呢?理论上既然没有限制,那麼一定是构造上的问题,原来我们在做源极和曳极扩散时往往会在源极、曳极及矽晶体座(substrate)之间形成一个相当大的电容,就由於这些电容使整个MOS的运作速率慢了下来,现在科学家正在利用各种方法来减少这些电容以增加速率,可以相信未来的MOS积体电路的运作速率必能大大的提高。
何谓SOS
在MOS的制造程序及运作原理中(参考图二,六),我们可以发现真正使用到的矽晶片只是表面一层,矽晶片实在不需要这麼厚,但是太薄的矽晶片太碎根本无法 *** 作,因此科学家们想到另一种方法,那就是设法在人造的蓝宝石上镀上一层矽的单晶薄膜(大约10-4cm厚),然后在这层薄膜上做MOS的结构。实验发现用此种结构,源极和曳极的电压均较用矽晶片者降低了约20倍。而且我们可以用化学方法将电晶体之间的矽单晶薄膜腐蚀掉而收到隔离的效果,然后我们蒸镀(evaporation)金属上去使电晶体与电晶体能连接构成我们所需要的线路。在这里我要特别指出来的是金属大部份是镀在蓝宝石上,不像以前的MOS是镀在矽晶片上,因此不会有额外的电容。这种在蓝宝石上镀上一层矽单晶薄膜制出来的元件我们称为SOS,是从英文字母Silicon on Sapphire中缩写而来。目前此种SOS积体电路由於技术上尚未成熟,故其成本仍相当高,因此只有在某些特殊的场合中才用到。
结语
MOS除了可以成功地做为一个场效电晶体外,我们尚可利用闸极与矽体座之间的二氧化矽做为电容之用。电容可以储存电荷,若我们把这些MOS电容适当排列,则利用时钟脉冲信号(clock pulse signal)来控制电荷从一个电容上转移到另一个电容上,利用此种原理我们可以用 MOS 做资料处理系统所用的移位记录器(shift register)。此外 MOS 电容也可以用作感光原件,当光照到此种元件时会产生电荷载子,这种载子即被储存在MOS 电容中,以后当有一列时钟脉冲信号输入时,我们可以把前面这些因光而产生的信号读出来(read out)。目前已制成的一种电视摄影机,其体积只有手掌一般大而其重量尚则不及一磅,就是利用此种元件制成的。此种MOS感光元件尚可应用在慢描电视(slow-scan television),高度传真等一些需要高鉴别率(resolution)的仪器上。我们可以想像此种元件将来在工业上或其他娱乐消费上应用的远景。
回顾MOS的发展史,其理论很早就被科学家推演出来,但真正MOS元件大量应市却是最近几年的事,可见一个听起来很合理的构想往往是要赖科学技术来将之实现的。我们能不埋首科技研究以期迎头赶上别人吗?译者期与青年朋友共勉之。
原文译自“Scientific American.”
1973年8月号
注一:配合离子深植技术的发展及晶体品质的改良,此种积体电路似乎是指日可待的。(请参阅科学月刊第四卷第十期)
注二:让我们以N型矽晶来说明此种现象,当金属与半导体接触在一起时,靠近界面的N型晶体内的电子会被排斥,因此在界面附近会有一个带正电的离子区域,我们称之为空间电荷区(space charge region)。
注三:薛克利,巴定和卜勒登三人即因发明电晶体而获得1956年诺贝尔物理奖。其中卜勒登曾於去年九月间来华访问。
注四:N型晶体和P型晶体接合在一起所形成接面称为PN接面,但在实际的制造上是用扩散或离子深植技术在N型(或P型)的原晶体内渗入三价(或五价)的原子以形成此种接面。
注五:在半导体学中此种正电荷称为“电洞”(hole),因为其实际上是由於晶体构造的键上缺少一个电子形成的,此种电洞又很容易从其他键上夺取电子过来而产生电子的流动,此等电子流可以看成电洞的流动,唯其方向和电子流动方向相反。读者应注意的是此种带正电的电洞与前面空间电荷间的正电荷完全不同,空间电荷区中的正电荷是由离子产生的,是固定而不可移动的,但电洞则可以因所加之电场而流动产生电流。
SOS 服务器 *** 作系统 Server Operating SystemsSOS 风暴观测卫星 Storm Observation Satellite
SOS 系统 *** 作功能描述 System Operational Specification
SOS 空间 *** 作模拟器 Space Operations Simulator
SOS 对象安全存储 Secure Object Store
SOS 国务卿,秘书长 Secretary Of State
SOS 研究范围 Scope of Studies
SOS 服务范围 Scope of Services
SOS 硅蓝宝石或硅蓝宝石上的硅片 Silicon On Sapphire
SOS 共享 *** 作系统 Share Operating System
SOS 服务速度 Speed Of Service
SOS 标准和开放系统 Standards &Open Systems
SOS 战略选择研究 Strategic Options Study
SOS 服务声明书 Statement Of Service
SOS 系统 *** 作状态 System Operation Status
SOS 支撑 *** 作系统 Support Operating System
SOS Symbian *** 作系统 Symbian Operating System
SOS 撒旦之子 Son of Satan
SOS 面向服务的软件 Service Oriented Software
SOS 智能目标分析拯救系统 Smart Object Salvation
SOS 国际莫尔斯电码救难信号 S.O.S.
MOSSOS 采用蓝宝石硅的金属-氧化物半导体(器件) Metal-Oxide-Semiconductor Silicon On-Sapphire
SISOS 单输入单输出系统 single in single out system
AYSOS 你是疯了还是怎么了? Are You Stupid Or Something
USOS 美国系列网球公开赛 US Open Series
至于你说的那个曲解,没找到啊~
人事变动始终牵动着半导体产界人士的心。
2019 年是不平凡的一年,众多半导体巨头进行了高管调整,或宣布调整信息。下面一起回顾 2019 年半导体产业都经历了哪些重大人事变动。
SK 海力士
2018 年 12 月,SK 海力士公布营运长李锡熙晋升 CEO,原 CEO 朴星昱则转任 SK 集团 Supex 追求协议会 ICT 委员长,负责开拓 SK 集团未来技术与新成长动力。
现年 56 岁的李锡熙产学界经历完整,取得首尔大学无机材料硕士后,1990 年加入 SK 海力士前身现代电子成为研究员,此后又到美国求学,取得史丹佛大学材料博士学位,2000 年进入英特尔(Intel)就职。
任职英特尔 10 年时间,多次获颁最高荣誉的英特尔成就奖,2010 年在韩国科学技术院(KAIST)担任教授,2013 年重回 SK 海力士负责 DRAM 开发,2017 年晋升营运长成为半导体事业负责人。
英特尔
2019 年 1 月 31 日,英特尔宣布任命临时首席执行官罗伯特 - 斯旺(Robert Swan)为正式 CEO。这是英特尔 51 年来第七次任命首席执行官。
自 2018 年 6 月,首席执行官布莱恩 - 科再奇(Brian Krzanich)因违反公司政策与一名员工存在不正当关系而被解职,罗伯特 - 斯旺担任临时首席执行官至今已有 7 个月,他自 2016 年起担任首席财务官,并获选为公司董事会成员。
现任财务副总裁托德 - 安德伍德(Todd Underwood)将接任临时 CFO 一职,公司将寻找一名永久性 CFO。
Swan 拥有布法罗大学工商管理学士学位和宾厄姆顿大学工商管理硕士学位。他是 eBay 的董事会成员。1985 年在通用电气公司开始了他的职业生涯,持有各种高级财务他在那里工作了 15 年。在其职业生涯早期,斯旺担任电子数据系统公司和 TRW 公司的首席财务官,以及担任 Webvan Group Inc。 首席运营官兼首席执行官的首席财务官。2006 年加入 eBay Inc。 担任首席财务官,负责 eBay 财务职能的各个方面,包括管理,财务规划和分析,税务,财务,审计,兼并和收购,和投资者关系。2015 年加入 General Atlantic 担任运营合作伙伴,与公司的全球投资公司密切合作,共同实现增长目标。2016 年 10 月起担任英特尔公司的执行副总裁兼首席财务官(CFO)。他负责监督英特尔的全球金融组织,包括财务,会计和报告,税务,财务,内部审计和投资者关系,信息技术;和公司的企业战略办公室。2018 年 6 月 21 日被任命为英特尔公司的临时首席执行官。
利扬芯片
2019 年 2 月,张亦锋加入广东利扬芯片测试股份有限公司任公司首席执行官。
张亦锋,在西安电子 科技 大学通信工程学院应用电子技术专业获学士学位,复旦大学管理学院工商管理专业(MBA)毕业,研究生学历。2000 年 7 月至 2013 年 12 月,,任职于上海华虹 NEC 电子有限公司,先后在计划部、Foundry 事业部、业务发展部等部门担任资深主管工程师、主任、科长等职。2014 年 1 月至 2015 年 8 月任职于上海华虹宏力半导体制造有限公司,担任产品销售科科长。2015 年 8 月至 2015 年 12 月任职于武汉力源信息股份有限公司,担任 IC 事业部总监。2016 年 1 月至 2019 年 1 月,任职于珠海博雅 科技 有限公司,担任首席商务官、副总裁,兼任全资子公司四川泓芯 科技 有限公司总经理。
华虹集团
华虹半导体
2019 年 3 月 28 日,华虹集团对旗下制造平台进行了人事调整,宣布上海华力集成总经理唐均君接替王煜担任上市公司华虹半导体总裁一职(5 月 1 日正式接任),希望发挥唐总在 12 英寸生产线的经验,以便更好的让华虹无锡基地的 12 英寸产线快速产生效益。
上海华力
华虹集团对旗下制造平台进行了人事调整,宣布上海华力微总裁雷海波兼任上海华力集成总裁,作为中国大陆培养的本土 12 英寸产线领头人,雷总现在要负责两个 12 英寸产线的运营。华力微在 2018 年实现首次年度盈利。
上海新升
2019 年 5 月 5 日,邱慈云出任上海新升 CEO。
邱慈云生于 1956 年,获得加州伯克利分校电气工程博士学位和哥伦比亚大学高级管理人员工商管理硕士学位。他早年曾在德国慕尼黑固体技术研究所 At&t 贝尔实验室和台积电工作。2001 年曾追随张汝京创办中芯国际;2005 年加入华虹 NEC 担任运营副总裁;2007 年加入马来西亚 Silterra 担任 COO;2009 年回到华虹 NEC 担任总裁兼 CEO;2011 年 8 月起,担任中芯国际 CEO,至 2017 年 5 月因个人原因请辞。
瑞萨电子
2019 年 6 月 26 日,瑞萨电子官方发布公告,现任 CEO 吴文精( Bunsei Kure)将于 2019 年 6 月 30 日辞去其代表董事、总裁兼 CEO,柴田英利(Hidetoshi Shibata)将成为为其代表董事,总裁兼 CEO,任命自 2019 年 7 月 1 日起生效。
吴文精下台的原因是瑞萨经营业绩欠佳。
芯思想研究院认为,瑞萨是日本半导体产业界的一朵奇葩,越整合则越虚弱。
武汉弘芯
2019 年 7 月 17 日,蒋尚义正式出任武汉弘芯总经理。
蒋尚义,1968 年在国立台湾大学获电子工程学学士学位,1970 年在普林斯顿大学获电子工程学硕士学位,1974 年在斯坦福大学获电子工程学博士学位。毕业后,蒋博士曾在德州仪器和惠普公司工作。1997 年回到台湾,任职台积电研发副总裁,是台积电掌管单一部门时间最久的人。2013 年任台积电共同首席执行副总和共同运营官。
在台积电期间,蒋尚义将研发团队从 120 人扩编至 2013 年的 7000 多人,年度研发经费更从 25 亿台币激增至 2013 年的 480 亿台币;曾参与研发 CMOS、NMOS、Bipolar、DMOS、SOS、SOI、GaAs 激光、LED、电子束光刻、矽基太阳能电池等项目;带领台积电自主研发,一路从 0.25 微米、0.18 微米、0.15 微米、0.13 微米、90 纳米、65 纳米走到 40 纳米世代,还参与了 28 纳米 HKMG 高介电金属闸极、16 纳米 FinFET 等关键节点的研发,使台积电的行业地位从技术跟随者发展为技术引领者。
华微电子
2019 年 7 月 9 日,首席执行官(CEO)聂嘉宏先生辞呈。
经公司董事长提名,董事会提名委员会审核,公司董事会同意聘任于胜东先生为首席执行官,任期自董事会通过之日起至本届董事会届满为止。
凯世通
2019 年 8 月,陈克禄接替陈烔(JIONG CHEN)担任凯世通总经理。
陈克禄,原上海浦东 科技 投资有限公司投资总监。
2015 年,上海浦东 科技 投资有限公司(以下简称“浦科投资”)入主万业企业,并于 2018 年成为其控股股东(持股 28.16%),积极推动其战略转型。
万业企业将转型目标瞄准了集成电路装备及材料产业。2017 年,经董事会和股东大会审议通过,万业企业以 10 亿元自有资金认购上海半导体装备材料产业投资基金首期 20%份额,迈出了转型的第一步。
2018 年 7 月,万业企业启动收购上海凯世通半导体股份有限公司(以下简称“凯世通”)100%股权相关事宜,最终以 3.98 亿元的价格、以现金收购的方式,成功完成对凯世通 100%股权的收购。收购凯世通后,万业企业正式切入集成电路核心装备产业之一的离子注入机领域。
长电 科技
2019 年 9 月 9 日,长电 科技 发布公告称:董事会收到 LEE CHOON HEUNG(李春兴)先生请求辞去首席执行长(CEO)及第七届董事会董事职务的书面辞职书,经研究讨论公司董事会同意李春兴先生辞去首席执行长职务的请求。根据《公司章程》,李春兴先生辞去公司董事职务在书面辞职书送达董事会时已生效,其不再担任公司董事。辞去上述职务后,李春兴先生将继续担任公司首席技术长(CTO)职务,并继续致力于公司的发展。
根据长电 科技 董事长周子学先生提名,经董事会提名委员会审核,一致同意聘任郑力先生为公司首席执行长,同时提名郑力先生为公司第七届董事会非独立董事,任期自本次董事会聘任通过之日起至本届董事会任期届满。
郑力,男,1967 年 8 月出生,天津大学工业管理工程专业工学士,东京大学金融经济管理硕士。郑力在美国、日本、欧洲和中国国内的集成电路产业拥有超过 26 年的工作经验。曾任曾任恩智浦全球高级副总裁兼大中华区总裁;中芯国际全球市场高级副总裁,瑞萨电子大中华区 CEO,NEC 电子(后与日立公司和三菱公司的半导体部门合并为瑞萨电子)大中华区总裁,华虹国际有限公司副总裁,上海虹日国际电子有限公司总经理,日本东棉美国公司(现丰田通商美国公司)加州圣荷西分公司总经理,日本东棉公司总部(现日本丰田通商公司)电子信息系统本部担任产品开发经理、集成电路项目管理经理等职务。
安靠
2019 年 6 月,安靠中国区总裁周晓阳正式离职,10 月由曹持论接任。
周晓阳,西安人,1984 年本科毕业于西安交通大学半导体专业,1984 年至 1987 年在骊山微电子研究所师从黄敞老师,获得硕士学位;1987 年至 1993 年在西安 771 所工作,时任组合车间副主任;1993 年至 1997 年任职国家半导体上海公司工作;1997 年至 2007 年任职英特尔;2007 年至 2011 年任职星科金朋;2011 年至 2014 年在楼氏电子工作,曾任楼氏电子苏州和北京公司总经理;2014 年加入安靠,任中国区总裁及安靠封装测试(上海)有限公司总经理。
安靠中国区在周晓阳的带领下,创下了辉煌的业绩,公司已经成为中国大陆及安靠全球技术最先进、产能最大、发货量最大的 NAND 封测厂,为很多中国集成电路设计公司保驾护航。
在周晓阳带领下,2014-2018 年间,安靠上海年平均贡献税收约为 1 亿元人民币,并获得浦东“纳税突出贡献奖”;进出口额约 224 亿美元,连年获得浦东“贸易贡献奖”;此外,安靠上海名列中国十大封测企业、荣获市外资进出口百强、市外资吸收就业人数百强、市外资双优企业等奖项。
曹持论,2001 年 5 月加入安靠公司,曾担任安靠中国区副总裁及厂长职务。
芯聚能半导体
2019 年 11 月正式加入创业公司芯聚能半导体,接替王颖颖担任法人和总经理。
周晓阳,西安人,1984 年本科毕业于西安交通大学半导体专业,1984 年至 1987 年在骊山微电子研究所师从黄敞老师,获得硕士学位;1987 年至 1993 年在西安 771 所工作,时任组合车间副主任;1993 年至 1997 年任职国家半导体上海公司工作;1997 年至 2007 年任职英特尔;2007 年至 2011 年任职星科金朋;2011 年至 2014 年在楼氏电子工作,曾任楼氏电子苏州和北京公司总经理;2014 年加入安靠,任中国区总裁及安靠封装测试(上海)有限公司总经理。2019 年 6 月离开安靠。
北方华创
10 月 31 日,北方华创发布公告称,董事会于 2019 年 10 月 31 日收到公司副总经理张国铭先生提交的书面辞职报告,张国铭先生由于个人原因申请辞去公司副总经理职务,辞职后不在公司担任任何职务。
张国铭先生曾任北方华创 科技 集团股份有限公司高级副总裁、首席战略官,并兼任北京北方华创微电子装备有限公司董事、副总裁,北京七星华创流量计有限公司董事长,北京七星华创集成电路装备有限公司执行董事。曾任北京建中机器厂总工程师、副厂长,北京七星华创电子股份有限公司微电子设备分公司总经理,北京七星华创电子股份有限公司副总经理。
张国铭先生担任国家 02 科技 重大专项总体专家组专家、 科技 部“十三五”重点专项先进制造专家组专家、国家集成电路产业投资基金股份有限公司投资审核委员会委员、北京电子制造装备行业协会秘书长、国际 SEMI 协会全球董事会董事、SEMI 中国半导体设备及材料委员会主席等多种职务。
据悉,张国铭已经加盟华海清科。
来源: 与非网
关注同花顺 财经 微信公众号(ths518),获取更多 财经 资讯
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)