电导调制效应是什么?

电导调制效应是什么?,第1张

电导调制效应又称基区宽度调制效应,属于半导体物理的范畴了。就是指基区的有效宽度随集电结的反偏电压的变化而变化的效应。当集电结反向电压增大时,集电结的空间电荷区加宽,这就引起基区有效宽度变窄。

电导调制效应是Webster效应,是在大注入时基区电导增大的现象;而基区宽度调制效应就是Early效应,是集电结电压变化而致使基区宽度变化、并造成伏安输出特性倾斜、使输出电阻减小的现象;另外,基区宽度展宽效应就是Kirk效应,是在大电流下基区宽度增大的现象。

当PN结上流过的正向电流较大时,注入并积累在低掺杂N区的少子空穴浓度将很大,为了维持半导体中性条件,其多子浓度也相应大幅度增加,使得其电阻率明显下降,也就是电导率大大增加,这就是电导调制效应。

电迁移效应:

电迁移是金属线在电流和温度作用下产生的金属迁移现象,它可能使金属线断裂,从而影响芯片的正常工作。电迁移在高电流密度和高频率变化的连线上比较容易产生,如电源、时钟线等。为了避免电迁移效应,可以增加连线的宽度,以保证通过连线的电流密度小于一个确定的值。

电迁移效应主要发生在高电流密度和高频率变化的连线上,如电源、时钟线等。在芯片的正常寿命时间中,电源网络中的大电流会引起电迁移效应,进而使得电源网络的金属线性能变差,最终影响芯片的可靠性。避免电迁移效应的主要方法为增大金属线宽。

电源网格中的大电流也会引起电迁移(EMI)效应,在芯片的正常寿命时间内会引起电源网格的金属线性能劣化。这些不良效应最终将造成代价不菲的现场故障和严重的产品可靠性问题。

阐述了无铅焊料中电迁移的物理特性,由于焊点的特殊几何形状,电流拥挤效应将发生在焊点与导线的接点处;电迁移效应导致无铅焊料中金属间化合物(IMC)的生成与溶解,以及焊点下的金属化层(UBM)的溶解和消耗,使原子发生迁移并会产生孔洞,造成焊点破坏,缩短了焊点平均失效时间(MTTF),从而带来可靠性问题。

以BJT为例电导调制效应又称基区宽度调制效应,属于半导体物理的范畴了。就是指基区的有效宽度随集电结的反偏电压的变化而变化的效应。当集电结反向电压增大时,集电结的空间电荷区加宽,这就引起基区有效宽度变窄。因而载流子在基区复合的机会减小,所以基极电流Ib随集电极反偏电压增大而减小,也就是基区有效电导减小,因此又叫电导调制效应.\r\n应该修改如下:\r\n电导调制需效应是Webster效应,是在大注入时基区电导增大的现象;而基区宽度调制效应就是Early效应,是集电结电压变化而致使基区宽度变化、并造成伏安输出特性倾斜、使输出电阻减小的现象;另外,基区宽度展宽效应就是Kirk效应,是在大电流下基区宽度增大的现象。这三种重要的效应是BJT的一种基本特性,要注意区分开来!\r\n根据《电力电子技术》机械工业出版社西安交通大学王兆安黄俊主编第4版第12页\r\n当PN结上流过的正向电流较大时,注入并积累在低掺杂N区的少子空穴浓度将很大,为了维持半导体中性条件,其多子浓度也相应大幅度增加,使得其电阻率明显下降,也就是电导率大大增加,这就是电导调制效应。\r\n更准确的定义下:Webster效应也称为基区电导调制效应,这是BJT在大工作电流时、基区电导发生增大的一种现象。\r\n因为半导体内部各点总是要保持电中性,所以,在发射结正偏、向基区注入少子的同时,也必将有相同数量、相同浓度梯度的多子在基区中积累起来;当注入的少子浓度很大(大注入)、接近掺杂浓度时,则额外积累起来的多子浓度也就与掺杂浓度相当了,这时,基区的电导率实际上就决定于基区掺杂浓度和额外增加的多子浓度的总和(换句话说,大注入的结果就相当于增加了基区掺杂浓度),从而基区的有效电导率大大增加了(注入越大,有效电阻率降低得越多),这就是基区电导调制效应(也称为Webster效应)。\r\nWebster效应的直接影响就是BJT基区的电阻率下降(电导率增大),使得发射结的注射效率降低,减小了电流放大系数。\r\n对于基区掺杂浓度分布均匀的晶体管(例如合金晶体管)而言,引起其在大电流下电流放大系数b下降的主要原因就是Webster效应。不过,对于Si平面晶体管,由于基区掺杂浓度较高一些,所以Webster效应的影响往往较小(这时,引起大电流时b下降的主要原因是Kirk效应)。\r\n总之,BJT在大电流(大注入)工作时,往往容易出现


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8986197.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存