拓展资料:
氧化镓的用途:
1、 氧化镓并不是很新的技术,多年前就有公司和研究机构对其在功率半导体领域的应用进行钻研,但就实际应用场景来看,过去不如SiC和GaN的应用面广,所以相关研发工作的风头都被后二者抢去了。而随着应用需求的发展愈加明朗,未来对高功率器件的性能要求越来越高,这使得人们更深切地看到了氧化镓的优势和前景,相应的研发工作又多了起来,已成为美国、日本、德国等国家的研究热点和竞争重点。而我国在这方面还是比较欠缺的。
2、 虽然氧化镓的导热性能较差,但其禁带宽度(4.9eV)超过碳化硅(约3.4eV),氮化镓(约3.3eV)和硅(1.1eV)的。由于禁带宽度可衡量使电子进入导通状态所需的能量。采用宽禁带材料制成的系统可以比由禁带较窄材料组成的系统更薄、更轻,并且能应对更高的功率,有望以低成本制造出高耐压且低损失的功率元件。此外,宽禁带允许在更高的温度下 *** 作,从而减少对庞大的冷却系统的需求。
3、 氧化镓是一种宽禁带半导体,禁带宽度Eg=4.9eV,其导电性能和发光特性良好,因此,其在光电子器件方面有广阔的应用前景,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。这些是氧化镓的传统应用领域,而其在未来的功率、特别是大功率应用场景才是更值得期待的。
4、 氧化镓是一种新兴的功率半导体材料,其禁带宽度大于硅,氮化镓和碳化硅,在高功率应用领域的应用优势愈加明显。但氧化镓不会取代SiC和GaN,后两者是硅之后的下一代主要半导体材料。氧化镓更有可能在扩展超宽禁带系统可用的功率和电压范围方面发挥作用。而最有希望的应用可能是电力调节和配电系统中的高压整流器,如电动汽车和光伏太阳能系统。
(1) (2)N ;B (3)GaCl 3 +NH 3 =GaN+3HCl (4)共价键 原子 (5)①sp 2 4 ② |
(1)镓原子序数为31,所以其核外电子排布式为:1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 1 ,最外层电子为价电子,价电子排布式为:4s 2 4p 1 ,即4s轨道有一对自旋相反的电子,4p轨道只有一个电子,故答案为: ; (2)第一电离能同主族从上到下,越来越小,N元素为该主族最上面的元素,第一电离能最大;电负性从上到下,越来越小,镓所在族最上面的元素为B; (3)反应物为NH 3 和GaCl 3 ,生成物为GaN,不难判断出另一种产物为HCl,根据原子守恒写出化学方程式,故答案为:GaC l3 +NH 3 =GaN+3HCl; (4)由于氮化镓与金刚石具有相似的晶体结构,所以氮化镓为原子晶体,原子之间以共价键结合在一起; (5)①根据晶胞可以看到Ga可以相邻的三个N形成共价键,即Ga形成三条共价键,所以杂化类型为sp 2 杂化;观察晶胞结构发现N原子周围距离最近的Ga数目为4,即配位数为4。 ②GaN晶胞中,Ga位于顶点和体心,所以含有Ga数为:8× +1=2,N原子位于棱和体心,所以N数为:4× +1=2,GaN晶胞中含有两个GaN,晶胞边长为 |
硅 四氟化硅 二氧化硅 硅酸钠硅酸 |
由硅元素的特征性质推断。 |
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)