半导体历史发展有哪些

半导体历史发展有哪些,第1张

半导体的发现实际上可以追溯到很久以前。

1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。

不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。

1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。

半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。

在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。

扩展资料:

人物贡献:

1、英国科学家法拉第(MIChael Faraday,1791~1867)

在电磁学方面拥有许多贡献,但较不为人所知的,则是他在1833年发现的其中一种半导体材料。

硫化银,因为它的电阻随着温度上升而降低,当时只觉得这件事有些奇特,并没有激起太大的火花;

然而,今天我们已经知道,随着温度的提升,晶格震动越厉害,使得电阻增加,但对半导体而言,温度上升使自由载子的浓度增加,反而有助于导电,这也是半导体一个非常重要的物理性质。

2、德国的布劳恩(Ferdinand Braun,1850~1918)。

注意到硫化物的电导率与所加电压的方向有关,这就是半导体的整流作用。

但直到1906年,美国电机发明家匹卡(G. W. PICkard,1877~1956),才发明了第一个固态电子元件:无线电波侦测器(cat’s whisker),它使用金属与硅或硫化铅相接触所产生的整流功能,来侦测无线电波。

在整流理论方面,德国的萧特基(Walter Schottky,1886~1976)在1939年,于「德国物理学报」发表了一篇有关整流理论的重要论文,做了许多推论,他认为金属与半导体间有能障(potential barrier)的存在,其主要贡献就在于精确计算出这个能障的形状与宽度。

3、布洛赫(Felix BLOCh,1905~1983)

在这方面做出了重要的贡献,其定理是将电子波函数加上了周期性的项,首开能带理论的先河。

另一方面,德国人佩尔斯(Rudolf Peierls, 1907~ ) 于1929年,则指出一个几乎完全填满的能带,其电特性可以用一些带正电的电荷来解释,这就是电洞概念的滥觞;

他后来提出的微扰理论,解释了能隙(Energy gap)存在。

参考资料来源:百度百科-半导体

半导体靶材相关的可转债有江丰转债、隆华转债两个,光刻胶相关的可转债有彤程转债、晶瑞转债、晶瑞转。

拓展资料:

一、 *** 作要点

根据交易所规定,发行可转换公司债券的公司在其股票上市时,其上市交易的可转换公司债券即可转换为该公司股票,转换的主要步骤有三个。

1、首先是申请转股。投资者转股申请通过证券交易所交易系统以报盘方式进行。

基于安全性的考虑,一般投资者准备转股时,最好不要通过电话委托或网上交易进行转股程序 *** 作,而应到转债所托管的证券营业部去填写提交转股申请。

2、然后是接受申请,实施转股。证交所接到报盘并确认其有效后,记减投资者的债券数额,同时记加投资者相应的股份数额。

根据现有规定,转股申请不得撤单。(过时)

3、最后是转换股票的上市流通。转换后的股份可于转股后的下一个交易日上市交易。

为方便投资者及时结算资金余款,对于不足转换一股的转债余额,上市公司通过证券交易所当日以现金兑付。

二、定价

转债理论价值是纯债价值与复杂期权价值之和,影响因素主要包括正股价格、转股价、正股与转债规模、正股历史波动率、所含各式期权的期限、市场无风险利率、同资质企业债到期收益率等。纯债价值可以通过贴现转债约定未来现金流计算得出,复杂期权价值可以采用二叉树、随机模拟等数量化方法确定,主要是所含赎回、回售、修正、转股期权的综合价值。转债理论价值与纯债价值、转股价值的关系是,当正股价格下跌时转债价格向纯债价值靠近,在正股价格上涨时转债价格向转股价值靠近,转债价格高出纯债价值的部分为转债所含复杂期权的市场价格。可转债的投资收益主要包括票面利息收入、买卖价差收益和数量套利收益等。

什么是半导体封装

半导体电子元器件的封装不仅起到连接内部集成电路芯片键合点和外部电气组建的作用,还为集成电路提供了一个稳定可靠的工作环境,对集成电路芯片起到机械或环境保护的作用。因此,集成电路封装应具有较强的机械性能、良好的电气性能、散热性能和化学稳定性。封装质量的好坏与集成电路的整体性能优劣关系很大。

不同类型的集成电路,使用场合和气密性要求不同,其加工方法和封装材料也不同。早期的集成电路,其封装材料采用有机树脂和蜡的混合体,用填充或贯注的方法进行密封,其可靠性很差;也曾采用橡胶进行密封,但是其耐热、耐压及电性能都不好,现已被淘汰。目前,流行的气密性封装材料是陶瓷-金属、玻璃金属和低熔玻璃-陶瓷等。由于大量生产和降低成本的需求,目前有很多集成电路采用了塑料封装材料,它主要采用热固性树脂通过模具加热加压的方法来完成封装,其可靠性取决于有机树脂及添加剂的特性和成型条件。塑料封装材料属于非气密性性装材料,其耐热性较差,且具有吸湿性。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8996420.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存