长电科技——半导体芯片封装和设计龙头企业

长电科技——半导体芯片封装和设计龙头企业,第1张

长电 科技 是全球领先的集成电路制造和技术服务提供商,提供全方位的芯片成品制造一站式服务,包括集成电路的系统集成、设计仿真、技术开发、产品认证、晶圆中测、晶圆级中道封装测试、系统级封装测试、芯片成品测试并可向世界各地的半导体客户提供直运服务。

通过高集成度的晶圆级(WLP)、2.5D/3D、系统级(SiP)封装技术和高性能的倒装芯片和引线互联封装技术,长电 科技 的产品、服务和技术涵盖了主流集成电路系统应用,包括网络通讯、移动终端、高性能计算、车载电子、大数据存储、人工智能与物联网、工业智造等领域。长电 科技 在全球拥有23000多名员工,在中国、韩国和新加坡设有六大生产基地和两大研发中心,在逾22个国家和地区设有业务机构,可与全球客户进行紧密的技术合作并提供高效的产业链支持。

随着市场对便携式移动数据访问设备的需求快速增长,市场对功能融合和封装复杂性的要求也在提升。同时对更高集成度,更好电气性能、更低时延,以及更短垂直互连的要求,正在迫使封装技术从 2D 封装向更先进的 2.5D 和 3D 封装设计转变。为了满足这些需求,各种类型的堆叠集成技术被用于将多个具有不同功能的芯片集中到越来越小的尺寸中。

长电 科技 积极推动传统封装技术的突破,率先在晶圆级封装、倒装芯片互连、硅通孔(TSV)等领域中采用多种创新集成技术,以开发差异化的解决方案,帮助客户在其服务的市场中取得成功。

3D 集成技术正在三个领域向前推进:封装级集成、晶圆级集成和硅级集成。

• 封装级集成

利用常规的焊线或倒装芯片工艺进行堆叠和互连,以构建传统的堆叠芯片和堆叠封装结构,包括:

堆叠芯片 (SD) 封装 ,通常在一个标准封装中使用焊线和倒装芯片连接,对裸片进行堆叠和互连。配置包括 FBGA-SD、FLGA-SD、PBGA-SD、QFP-SD 和 TSOP-SD。

层叠封装(PoP) ,通常对经过全面测试的存储器和逻辑封装进行堆叠,消除已知合格芯片 (KGD) 问题,并提供了组合 IC 技术方面的灵活度。倒装芯片 PoP 选项包括裸片 PoP、模塑激光 PoP 和裸片模塑激光 PoP 配置 (PoP-MLP-ED)。

封装内封装 (PiP) ,封装内封装 (PiP) 通常将已封装芯片和裸片堆叠到一个 JEDEC 标准 FBGA 中。经过预先测试的内部堆叠模块 (ISM) 接点栅格阵列 (LGA) 和 BGA 或已知/已探测合格芯片 (KGD),通过线焊进行堆叠和互连,然后模塑形成一个与常规FBGA封装相似的 CSP。

3D 晶圆级集成 (WLP) 使用再分布层和凸块工艺来形成互连。晶圆级集成技术涵盖创新的扇入(FIWLP) 和扇出 (FOWLP) 选项,包括:

嵌入式晶圆级 BGA(eWLB) - 作为一种多功能的扇出型嵌入式晶圆级 BGA 平台,eWLB 灵活的重建制造工艺可以降低基板的复杂性和成本,同时在一系列可靠、低损耗的 2D、2.5D 和 3D 解决方案中实现高性能、小尺寸和非常密集的互连。长电 科技 的 3D eWLB-SiP 和 eWLB-PoP 解决方案包括多个嵌入式无源和有源元器件,提供面对背、面对面选项,以及单面、1.5 面、双面超薄 PoP 配置。对于需要全 3D 集成的应用,长电 科技 的面对面 eWLB PoP 配置通过 eWLB 模塑层,在应用处理器和存储器芯片之间提供直接的垂直互连,以实现高带宽、极细间距的结构,其性能不逊色于 TSV 技术。

包封 WLCSP (eWLCSP ) - 一种创新的 FIWLP 封装,采用扇出型工艺,也称为 FlexLine 方法,来构建这种创新、可靠的包封 WLCSP 封装。

WLCSP - 标准晶圆级 CSP 封装。随着各种工艺技术的发展,例如低固化温度聚合物、将铜材料用于凸块下金属化 (UBM) 和 RDL,我们可以实现更高的密度,提高 WLCSP 封装的可靠性。

在真正的 3D IC 设计中,目标是将一个芯片贴合在另一个芯片上,两者之间没有任何间隔(无中介层或基材)。目前,“接近 3D”的集成通常也称为 2.5D 集成,其实现方法是使用薄的无源中介层中的硅通孔 (TSV),在封装内部连接芯片。芯片之间的通信通过中介层上的电路进行。FOWLP 工艺还可以产生一种被称为2.5D eWLB的创新过渡技术,在这种技术中,使用薄膜扇出型结构来实现高密度互连。长电 科技 的硅级集成产品组合包括:

2.5D / 扩展 eWLB - 长电 科技 基于 eWLB 的中介层可在成熟的低损耗封装结构中实现高密度互连,提供更高效的散热和更快的处理速度。3D eWLB 互连(包括硅分割)是通过独特的面对面键合方式实现,无需成本更高的 TSV 互连,同时还能实现高带宽的 3D 集成。基于 eWLB 的中介层简化了材料供应链,降低了整体成本,为客户提供了一个强大的技术平台和路径,帮助客户将器件过渡到更先进的 2.5D 和 3D 封装。

MEOL集成的2.5D封装 - 作为首批在2.5D 封装领域拥有成熟 MEOL TSV 集成经验的 OSAT 之一,长电 科技 在这个新兴互连技术领域扮演着重要角色,专注于开发经济高效的高产量制造能力,让 TSV 成为具有商业可行性的解决方案。长电 科技 还与众多的客户、研究机构和领先代工厂开展协作,为集成式 3D 封装解决方案开发有效的商业模式。

2.5/3D集成技术圆片级与扇出封装技术系统级封装技术倒装封装技术焊线封装技术MEMS与传感器

长电 科技 为以下封装选项提供晶圆级技术:

• eWLB(嵌入式晶圆级球栅阵列)

• eWLCSP(包封晶圆级芯片尺寸封装)

• WLCSP(晶圆级芯片尺寸封装)

• IPD(集成无源器件)

• ECP(包封芯片封装)

• RFID(射频识别)

当今的消费者正在寻找性能强大的多功能电子设备,这些设备不仅要提供前所未有的性能和速度,还要具有小巧的体积和低廉的成本。这给半导体制造商带来了复杂的技术和制造挑战,他们试图寻找新的方法,在小体积、低成本的器件中提供更出色的性能和功能。长电 科技 在提供全方位的晶圆级技术解决方案平台方面处于行业领先地位,提供的解决方案包括扇入型晶圆级封装 (FIWLP)、扇出型晶圆级封装 (FOWLP)、集成无源器件 (IPD)、硅通孔 (TSV)、包封芯片封装 (ECP)、射频识别 (RFID)。

突破性的 FlexLineTM 制造方法

我们的创新晶圆级制造方法称为 FlexLineTM 方法,为客户提供了不受晶圆直径约束的自由,同时实现了传统制造流程无法实现的供应链简化和成本的显著降低。FlexLine 制造方法是不同于常规晶圆级制造的重大范式转变,它为扇入型和扇出型晶圆级封装提供了很高的灵活性和显著的成本节省。

FlexLine方法,为客户提供了不受晶圆直径约束的自由,同时实现了传统制造流程无法实现的供应链简化和成本的显著降低。

用于 2.5D 和 3D 集成的多功能技术平台

FlexLine方法,为客户提供了不受晶圆直径约束的自由,同时实现了传统制造流程无法实现的供应链简化和成本的显著降低。

半导体公司不断面临复杂的集成挑战,因为消费者希望他们的电子产品体积更小、速度更快、性能更高,并将更多功能集成到单部设备中。半导体封装对于解决这些挑战具有重大影响。当前和未来对于提高系统性能、增加功能、降低功耗、缩小外形尺寸的要求,需要一种被称为系统集成的先进封装方法。

系统集成可将多个集成电路 (IC) 和元器件组合到单个系统或模块化子系统中,以实现更高的性能、功能和处理速度,同时大幅降低电子器件内部的空间要求。

什么是系统级封装?

系统级封装 (SiP) 是一种功能电子系统或子系统,包括两个或更多异构半导体芯片(通常来自不同的技术节点,针对各自的功能进行优化),通常搭载无源元器件。SiP 的物理形式是模块,根据最终应用的不同,模块可以包括逻辑芯片、存储器、集成无源器件 (IPD)、射频滤波器、传感器、散热片、天线、连接器和/或电源芯片。

先进 SiP 的优势

为了满足用户提高集成度、改善电气性能、降低功耗、加快速度、缩小器件尺寸的需求,以下几大优势促使业界转向先进的SiP 解决方案:

• 比独立封装的元器件更薄/更小的外形尺寸

• 提高了性能和功能集成度

• 设计灵活性

• 提供更好的电磁干扰 (EMI) 隔离

• 减少系统占用的PCB面积和复杂度

• 改善电源管理,为电池提供更多空间

• 简化 SMT 组装过程

• 经济高效的“即插即用”解决方案

• 更快的上市时间 (TTM)

• 一站式解决方案 – 从晶圆到完全测试的 SiP 模块

应用

当前,先进的 SiP 和微型模块正被应用于移动设备、物联网 (IoT)、可穿戴设备、医疗保健、工业、 汽车 、计算和通信网络等多个市场。每种先进 SiP 解决方案的复杂程度各不相同,这取决于每种应用需要的元器件的数量和功能。

以下是高级 SiP 应用的一些示例:

根据应用需求和产品复杂度,我们提供多种先进 SiP 配置,从带有多个有源和无源元件、通过倒装芯片、引线键合和SMT进行互连的传统2D 模块,到更复杂的模块,如封装内封装 (PiP)、层叠封装 (PoP)、2.5D 和 3D 集成解决方案。先进的SiP 模块配置 (2D/2.5D/3D) 针对特定终端应用进行定制,旨在充分发挥它们的潜在优势,包括性能、成本、外形尺寸和产品上市时间 (TTM)。

在倒装芯片封装中,硅芯片使用焊接凸块而非焊线直接固定在基材上,提供密集的互连,具有很高的电气性能和热性能。倒装芯片互连实现了终极的微型化,减少了封装寄生效应,并且实现了其他传统封装方法无法实现的芯片功率分配和地线分配新模式。

长电 科技 提供丰富的倒装芯片产品组合,从搭载无源元器件的大型单芯片封装,到模块和复杂的先进 3D 封装,包含多种不同的低成本创新选项。长电 科技 的丰富倒装芯片产品组合包括:

FCBGA 和 fcCSP 都使用锡球来提供第二级 (BGA) 互连。

颠覆性的低成本倒装芯片解决方案:fcCuBE

长电 科技 还提供名为“fcCuBE ”的创新低成本倒装芯片技术。fcCuBE 是一种低成本、高性能的先进倒装芯片封装技术,其特点是采用铜 (Cu) 柱凸块、引线焊接 (BOL) 互连以及其他增强型组装工艺。顾名思义,fcCuBE 就是采用铜柱、BOL 和增强工艺的倒装芯片。fcCuBE 技术适用于各种平台。自 2006 年获得首个与 fcCuBE 相关的创新 BOL 工艺专利以来,长电 科技 投入大量资金,将这一变革性技术发展成为引人注目的倒装芯片解决方案,广泛应用于从低端到高端的移动市场以及中高端消费和云计算市场的终端产品。

fcCuBE 的优势是推动来自成本敏感型市场,如移动和消费类市场,以及网络和云计算市场的客户广泛采用这种封装,因为在这些市场上,布线密度和性能的增加是必然趋势。fcCuBE 的独特 BOL 互连结构可扩展到非常细的凸块间距,实现高 I/O 吞吐量,同时缓解与应力相关的芯片与封装之间的交互作用 (CPI),而这种现象通常与无铅和铜柱凸块结构相关。这对于中高端的网络和消费类应用而言尤其重要。

长电 科技 提供全方位一站式倒装芯片服务

凭借在晶圆级封装、晶圆探针和最终测试方面的强劲实力,长电 科技 在为客户提供全方位一站式服务方面独具优势。长电 科技 提供从涉及到生产的全方位一站式倒装芯片服务,包括高速、高引脚数的数字和射频测试。

焊线形成芯片与基材、基材与基材、基材与封装之间的互连。焊线被普遍视为最经济高效和灵活的互连技术,目前用于组装绝大多数的半导体封装。

长电 科技 的多种封装方法都采用焊线互连:

铜焊线

作为金线的低成本替代品,铜线正在成为焊线封装中首选的互连材料。铜线具有与金线相近的电气特性和性能,而且电阻更低,在需要较低的焊线电阻以提高器件性能的情况下,这将是一大优势。长电 科技 可以提供各类焊线封装类型,并最大程度地节省物料成本,从而实现最具成本效益的铜焊线解决方案。

层压封装

基于层压的球栅阵列 (BGA) 互连技术最初推出的目的是满足高级半导体芯片不断增长的高引线数要求。BGA 技术的特点是将引线以小凸块或焊球的形式置于封装的底面,具有低阻抗、易于表面安装、成本相对较低和封装可靠性高等特点。长电 科技 提供全套的基于层压的 BGA 封装,包括细间距、超薄、多芯片、堆叠和热增强配置。

除了标准层压封装之外,长电 科技 还提供多种先进堆叠封装选项,包括一系列层叠封装 (PoP) 和封装内封装 (PiP) 配置。

引线框架封装

引线框架封装的特点是芯片包封在塑料模塑复合物中,金属引线包围封装周边。这种简单的低成本封装仍然是很多应用的最佳解决方案。长电 科技 提供全面的引线框架封装解决方案,从标准引线框架封装到小巧薄型热增强封装,包括方形扁平封装 (QFP)、四边/双边无引脚、扁平封装 (QFN/DFN)、薄型小外型封装 (TSOP)、小外形晶体管 (SOT)、小外形封装 (SOP)、双内联封装 (DIP)、晶体管外形 (TO)。

存储器器件

除了增值封装组装和测试服务之外,长电 科技 还提供 Micro-SD 和 SD-USB 这两种格式的存储卡封装。Micro-SD 是集成解决方案,使用 NAND 和控制器芯片,SD-USB 则是裸片和搭载 SMT 元器件的预封装芯片。长电 科技 的存储卡解决方案采用裸片级别组装、预封装芯片组装,或者两者结合的方式。

全方位服务封装设计

我们在芯片和封装设计方面与客户展开合作,提供最能满足客户对性能、质量、周期和成本要求的产品。长电 科技 的全方位服务封装设计中心可以帮助客户确定适用于复杂集成电路的最佳封装,还能够帮助客户设计最适合特定器件的封装。

2.5/3D集成技术圆片级与扇出封装技术系统级封装技术倒装封装技术焊线封装技术MEMS与传感器

MEMS and Sensors

随着消费者对能够实现传感、通信、控制应用的智能设备的需求日益增长,MEMS 和传感器因其更小的尺寸、更薄的外形和功能集成能力,正在成为一种非常关键的封装方式。MEMS 和传感器可广泛应用于通信、消费、医疗、工业和 汽车 市场的众多系统中。

传感器

传感器是一种能够检测/测量物理属性,然后记录并报告数据和/或响应信号的装置或系统。传感器通常组装在模块中,这些模块能够基于模拟或传感器馈送信号来作出响应。传感器有很多不同的类型和应用,例如压力传感器、惯性传感器、话筒、接近传感器、指纹传感器等

微机电系统 (MEMS)

MMEMS 是一种专用传感器,它将机械和电气原件通过分立或模块方式组合起来。MEMS是典型的多芯片解决方案,例如感应芯片与专用集成电路 (ASIC) 配对使用。MEMS 器件可以由机械元件、传感器、致动器、电气和电子器件组成,并置于一个共同的硅基片上。在消费、 汽车 和移动应用中使用基于 MEMS 的传感器具备一些优势,包括体积小、功耗低、成本低等。

集成一站式解决方案

凭借我们的技术组合和专业 MEMS 团队,长电 科技 能够提供全面的一站式解决方案,为您的量产提供支持,我们的服务包括封装协同设计、模拟、物料清单 (BOM) 验证、组装、质量保证和内部测试解决方案。长电 科技 能够为客户的终端产品提供更小外形尺寸、更高性能、更低成本的解决方案。我们的创新集成解决方案能够帮助您的企业实现 MEMS 和传感器应用的尺寸、性能和成本要求。

1. 嵌入式晶圆级球栅阵列 (eWLB) - 单芯片、多芯片和堆叠的层叠封装配置

2. 晶圆级芯片尺寸封装 (WLCSP) - 非常小的单芯片

3. 倒装芯片芯片尺寸封装 (fcCSP)- 单芯片或多芯片的倒装芯片配置

4. 细间距球栅阵列 (FBGA) - 单芯片或多芯片配置

5. 接点栅格阵列 (FBGA) - 单芯片或多芯片配置

6. 四边扁平无引脚 (FBGA) - 单芯片或多芯片配置

长电 科技 提供全方位一站式倒装芯片服务

凭借在晶圆级封装、晶圆探针和最终测试方面的强劲实力,长电 科技 在为客户提供全方位一站式处理方面独具优势。长电 科技 提供从设计到生产的全方位一站式倒装芯片服务,包括高速、高引脚数的数字和射频测试。

全方位一站式解决方案的优势

• 缩短产品上市时间

• 提升整体流程效率

• 提高质量

• 降低成本

• 简化产品管理

长电 科技 位于中国、新加坡、韩国和美国的全球特性分析团队,致力于为全球客户提供先进的封装表征服务,确保客户拥有高质量、高性能、可靠和高性价比的封装设计,以满足他们的市场需求。

晶圆凸块技术可以在半导体封装中提供显著的性能、外形尺寸和成本优势。晶圆凸块是一种先进的制造工艺,在切割之前就在半导体晶圆表面形成金属焊球或凸块。晶圆凸块实现了器件中的芯片与基材或印刷电路板之间的互连。焊球的成分和尺寸取决于多种因素,例如半导体器件的外形尺寸、成本以及电气、机械和热性能要求。

长电 科技 在晶圆凸块的众多合金材料和工艺方面拥有丰富的经验,包括采用共晶、无铅和铜柱合金的印刷凸块、锡球和电镀技术。我们的晶圆凸块产品包括 200mm 和 300mm 晶圆尺寸的晶圆凸块和再分配,以提供完整的一站式先进倒装芯片封装和晶圆级封装解决方案。

长电 科技 的认证质量测试中心,提供多种可靠性试验,包括环境可靠性测试、使用寿命可靠性测试、板级可靠性试验,和全方位的故障分析服务。

封测市场高景气,公司治理和业务协同不断强化,业绩实现高速增长: 公司 2020 年归母净利润同比+1371.17%,业绩实现高速增长,主要得益 于公司进一步深化海内外制造基地资源整合、提高营运效率、改善财务 结构,大幅度提高了经营性盈利能力。2020 年,公司海外并购的新加坡 星科金朋实现营业收入 13.41 亿美元,同比增长 25.41%,净利润从 2019 年的亏损 5,431.69 万美元到 2020 年的盈利 2,293.99 万美元,实现全面 扭亏为盈。另外,收购后,子公司长电国际利用星科金朋韩国厂的技术、 厂房等新设立的长电韩国工厂(JSCK)在 2020 年实现营业收入 12.35 亿美元,同比增长 64.97%;净利润 5,833.49 万美元,同比增长 669.97%。 2021 年第一季度,公司业绩延续高增长趋势,归母净利润同比 +188.68%,毛利率 16.03%,同比+2.93pct,净利率 5.76%,同比+3.41pct。

公司可为客户提 供从设计仿真到中后道封测、系统级封测的全流程技术解决方案,已成 为中国第一大和全球第三大封测企业。公司产能全球布局,各产区的配 套产能完善,随着产能利用率的持续提升,公司生产规模优势有望进一 步凸显,同时,各产区互为补充,各具技术特色和竞争优势,完整覆盖 了低、中、高端封装测试领域,在 SiP、WL-CSP、2.5D 封装等先进封 装领域优势明显。公司聚焦 5G 通信、高性能计算、 汽车 电子、高容量 存储等关键应用领域,大尺寸 FC BGA、毫米波天线 AiP、车载封测方 案和 16 层存储芯片堆叠等产品方案不断突破,龙头地位稳固。

用户资源和 高附加价值产品项目,加强星科金朋等工厂的持续盈利能力。目前,公 司国内工厂的封测服务能力持续提升,车载涉安全等产品陆续量产,同 时,韩国厂的 汽车 电子、5G 等业务规模不断扩大,新加坡厂管理效率 和产能利用率持续提升,盈利能力稳步改善。随着公司各项业务和产线 资源整合的推进,公司盈利能力有望持续提升,未来业绩增长动能充足。

kgd良率和ft良率经验关系:

按照国际惯例,首先需要再解释一下什么是CP和FT测试.CP是(ChipProbe)的缩写,指的是芯片在wafer的阶段,就通过探针卡扎到芯片管脚上对芯片进行性能及功能测试,有时候这道工序也被称作WS(WaferSort)而FT是Final Test的缩写,指的是芯片在封装完成以后进行的最终测试,只有通过测试的芯片才会被出货。

由于测试治具上的差异,CP和FT的不同点并不仅仅限于所处的工序阶段不同,两者在效率和功能覆盖上都有着明显的差异,这些信息是每一个IC从业人员需要基本了解的。

新兴技术的到来不断推动时代的发展。在PC时代,英特尔技术创新很大程度上是依赖于晶体管密度提高和CPU架构的创新。而走进数据时代,英特尔开始建立起全新路径。去年年底,在2018年12月英特尔“架构日”活动上,英特尔首次提出“六大技术支柱”的概念,也就是制程&封装、架构、内存和存储、互连、安全、软件。

英特尔副总裁兼封装测试技术开发部门总经理Babak Sabi、英特尔院士兼技术开发部联合总监Ravi V.Mahajan、英特尔封装研究事业部组件研究部首席工程师Adel Elsherbin、英特尔制程&封装部门技术营销总监Jason Gorss,四位英特尔封装技术专家齐聚上海,分享英特尔未来路线图及其对封装技术的整体愿景。

英特尔的六脉神剑

所谓“六脉神剑”,是武侠小说《天龙八部》中大理段式的最高武功绝学。这六大技术支柱犹如六脉神剑,给英特尔加了极高的“武力值”。Jason Gorss对六大技术支柱做了详细介绍。

在制程&封装层面,英特尔集中在晶体管和封装两大领域进行创新,晶体管层面,希望未来尺寸会越来越小,并且功耗越来越下降,因此这是其晶体管领域主要的创新方向。

在架构层面,英特尔过去一直通用的是X86架构。在进入到新时代以后,必须要掌握更多不同架构的组合,以满足更加专属的特定领域的需求,包括像FPGA、图像处理以及针对人工智能加速等等。而在内存和存储领域,Jason Gorss坦言,英特尔正面临一个全新的瓶颈,希望可以开发更加领先的技术和产品,可以继续消除传统内存和存储层级结构中的固有瓶颈,同时也可以实现加速互连。

在互连层面,不仅是数据的存储需要加大创新,Jason Gorss认为数据之间的互连和流通也是非常重要的,这是为什么英特尔在互连领域要投资不同层级的互连技术,希望可以更好满足在数据层面或者是封装内的数据流通。

在软件层面和硬件层面,英特尔已致力于实现最高的性能。但Jason Gorss表示至少还有另外两个维度可以进一步大幅度提高性能,其中软件就是非常重要的一个环节。英特尔在全球已经有超过1.5万名工程师,可以说远远超过其他任何一家市面上的主流企业,Jason Gorss称,英特尔也会继续在软件领域继续大展拳脚,继续加强软件领域的创新。

在安全层面,Jason Gorss表示,安全是一切的核心,不管做任何事情,任何创新技术,安全都是英特尔考虑的最中间的要素,因为它可以为其他一切的发展提供可靠的基础。

英特尔的六大技术支柱不仅颠覆了传统,也对业内众多企业造成了威胁。正如Jason Gorss所说,市面上没有任何一家企业可以像英特尔一样,可以为所有客户和相关方提供如此全面的解决方案。

在现代半导体中,焦点通常集中在工艺节点本身,封装作为其中的一个推动因素往往被忽视。芯片封装在电子供应链中看似不起眼,却一直发挥关键作用。作为处理器和主板之间的物理接口,封装为芯片的电信号和电源提供了一个着陆区。迈向以数据为中心的时代,先进封装将比过去发挥更重大的作用。Jason Gorss表示:“多年来业界并没有在先进封装上投入太多精力,但近年来情况发生了变化。先进封装已成为各公司打造差异化优势的一个重要领域,以及一个能够提升性能、提高功率、缩小外形尺寸和提高带宽的机会。”

你所不知道的封装流程

Babak Sabi在会上介绍了英特尔封装测试的全流程。一般来说,芯片的封装测试会经历以下几个步骤:

测试晶圆,选择哪种芯片会更合适;

硅片处理,将晶圆分割成更小的裸片;

已知合格芯片(KGD),连接到裸片上的具体接口以及插口,通过这种方法来对裸片进行测试,确保提交给客户所有的芯片都是质量合格的;

封装,将裸片结合基板以及其他的封装材料,共同封装在一起;

统一测试,对完成封装的芯片以及基板进行统一的测试,确保它们可以正常运作;

完成,确保整个芯片包括封装都会正常运行;

交付客户。

请点击输入图片描述

当然,英特尔也会涉及到封装的其他领域,包括有关供电、信号的传导、插座及连接器的开发,还有机械完整性以及表面切装工艺等的设计,以及高速的信号传导以及封装测试。Babak Sabi透露,英特尔可以开发非常小的封装,如图这个裸片上面叠了三层,非常小,非常薄,CPU还有底层的裸片,加上上层的存储器单元。

请点击输入图片描述

多种封装优势

“为实现MCP(先进的多芯片封装架构),英特尔的封装并不算复杂,把多个功能内部在封装内实现芯片和小芯片的连接,同时也可以帮助整体芯片实现单晶片系统和片上系统的功能。为了做到这一点,我们必须要确保整个裸片上的小芯片连接必须是低功耗、高带宽而且是高性能的。” Ravi Mahajan这样说道。为了实现该愿景,英特尔将低延时、高互连速度以及高性能作为三大技术开发目标。

Ravi Mahajan解释道,已知具体的线路板上分别有CPU,GPU,电压调节器以及内存的子系统等,共用的面积大概是4000平方毫米,英特尔通过独特的封装技术,可以把尺寸缩小到不到700平方毫米。系统面积大幅减少,造成物理距离缩减,因此对电压调节会做得更加高效,还可以带来更加高速的信号传递。得益于上述说到的高速的信号传导,延迟也可以得到下降。

英特尔还有另一个封装优势,支持多种节点的混合集成。Ravi Mahajan继续说道,这可以在上面可以实现多个不同元器件的集成,它的尺寸也会变得继续减少。早在2014年,英特尔的PCB板的厚度就已经在100微米左右,2015年开始实现无核的技术,换句话说,英特尔的封装已经是无核的了。

Ravi Mahajan表示,在未来,英特尔并不仅仅是把硅片叠到封装上,还可以把硅片直接放到封装里面,就是嵌入式桥接。由于先进封装技术的出现,英特尔是业内首家提出这套技术解决方案的提供商,可以让系统变得更薄,同时也可以让芯片尺寸变得更小。

再来是高速信号,Ravi Mahajan称,信号在整个半导体及芯片的表面来进行传递的,会受到金属表面粗糙度的影响,可能随着整个信号的传递而受到损耗。英特尔有专门的制造技术会大幅降低金属表面粗糙度,同时可采用全新的布线方法,来减少其间的串扰。除此之外,英特尔也采用空隙布线全新的一套生产工艺和流程,能更好的通过电介质堆栈的设计,进一步减少两者之间信号传导的损耗。现在,英特尔通过先进封装技术,信号传导速度可达112Gbps,未来希望达到224的数量级。

先进的多芯片封装架构

在高密度以及高带宽的互连方面,英特尔推出了先进的多芯片封装架构。Ravi Mahajan首先解释了两个术语:3D互连,指的就是两个裸片叠在一起;2D互连,指的是两个裸片进行水平的连接。这是数据传导时的两种方式,第一种是导线数量少,速度快;另一种是导线数量多,但传输速度慢。相比较之下,并行能大幅降低延迟、提升速度,如果经过良好设计,甚至可将整个能耗降低约10个百分比,这需要有先进的封装技术予以配合。

1、EMIB(嵌入式多芯片互连桥接)

说到2D的平面多芯片封装,这方面,英特尔一般考虑的是可以做到多薄以及几个裸片之间的间距到底是多少。英特尔采用独特的竞争优势EMIB(嵌入式多芯片互连桥接),实现更好的导线密度。其在局部做高密度布线,而非在全局做高密度布线,因为往硅中介层上叠加的裸片必须比硅中介层要小,否则成本会大幅上升。这样一来,英特尔可以同时具备两项技术,成本更低,性能更优化,一旦有需要,可以进行两种技术间的切换。

2、Foveros (3D立体芯片封装技术)

据资料显示,Foveros 3D封装技术带来了3D堆叠的显著优势,可实现逻辑对逻辑(logic-on-logic)的集成,为芯片设计提供极大的灵活性。该封装技术也成为继2018年推出EMIB 2D封装技术之后的下一个技术飞跃。这使得英特尔的有源基础裸片,可在非常小的面积上可以进行堆叠。目前其间距可做到50微米,英特尔已有先进技术可将其做到10微米甚至更小,这取决于系统的设计方法,每平方毫米IO则可以从400到10000来进行选择。

3、Co-EMIB(EMIB+Foveros)

Co-EMIB就是EMIB和Foveros两个技术之间的集成,可以把2D和3D芯片进行融合,将超过两个不同的裸片来进行叠加,具体的叠加可以在水平和垂直方向实现。这样的话可以有更好的灵活度,把它进行不同层面的分割,并且把它放在同一个封装内进行实现。

整个业界都在不断推动先进多芯片封装架构的发展,更好的满足高带宽、低功耗的需求。为实现构建未来封装,英特尔也做了一些准备。

构建未来封装的多手准备

“在封装互连技术方面,主要有两种方式,一种把主要相关功能在封装上进行集成。其中一个就是把电压的调节单元从母板上移到封装上,通过这种方式实现全面集成的电压调节封装。另外一个是称之为SOC片上系统分解的方式,我们会把具备不同功能属性的小芯片来进行连接,并放在同一封装里,通过这种方法可以实现接近于单晶片的特点性能和功能。” Adel Elsherbini说道,他是英特尔封装研究事业部组件研究部首席工程师。Adel Elsherbini称,不管是选择哪一种的实现路径,都需要做到异构集成和专门的带宽需求,而异构集成和专门的带宽需求也可以帮助实现密度更高的多芯片集成。互连方面主要考虑进一步降低延迟,上升带宽。

具体微缩方向有三种,一种是用于堆叠裸片的高密度垂直互连,可以大幅度的提高带宽,同时也可以实现高密度的裸片叠加。第二种是全局的横向互连。在未来随着小芯片使用的会越来越普及。第三个是全方位互连,可以实现之前所无法达到的3D堆叠带来的性能。

1.高密度垂直互连

它主要是靠每平方毫米有多少个桥凸来进行界定。因为芯片的尺寸可能会变得越来越小,为了保证足够的带宽,必须要在导线上下功夫,传统基于焊料的技术已经快要到极限了,这就是英特尔为什么要使用全新的技术,其中一个就是混合键合。通过混合键合的方法,间距上可做到10微米,在桥凸和互连密度上,英特尔也都可以做到更好。

高密度垂直互连具有多种优势,比如通过中介层对裸片进行互连,裸片传导需要通过互连引线进行,间距逐渐微缩,使得电容更少、时延更低、串扰更少,因为间距变窄,电容和电压在对等线高上,可以大幅降低功耗,大幅提高信号完整性和新能。

2.全横向互连

全横向互连会用每毫米的引线数量进行衡量。英特尔现可做到在小芯片间的高密度互连,未来随着小芯片尺寸越来越小,希望控制成本的同时,在整个封装层面均实现小芯片互连。横向互连需要考虑直线间距,直线间距越短,同样面积就可以安装更多硅片,信号传导距离也越短。现在,英特尔基本使用硅后端布线来实现。

使用有机中介层是更好的方案,因为它比硅的成本更低。但是,用有机中介层有一个弱势,就是必须要进行激光钻孔,而进行激光钻孔需要较大的捕获焊盘,如果信号需在这些较大的焊盘间传递,它的密度就会受限,进而影响其性能。为了解决这一挑战,英特尔开发了基于光刻定义的无未对准通孔(ZMV),可实现导线和通孔宽度的一致,这样就不需要焊盘进行连接,也不会牺牲传导速度。

3.全方位互连

全方位互连(ODI)可以带来使得上下方基础裸片带宽速度特别快;小芯片可以直接获得封装的供电,无需中间通孔;基础裸片无需比上方搭载小芯片的面积总和更大这些优势,结合之前介绍的架构,可以将延迟降低2.5倍,功耗缩短15%,带宽提高3倍。

Adel Elsherbini表示,这三种互连方式都可以提高每立方毫米上的功能并实现类似于单镜片的性能。

在异构和以数据为中心的时代,数据量越来越庞大,英特尔围绕这些挑战发力,并着手开发新的技术以及解决方案,希望进一步满足数据量增长和存储方面的大规模的需求。EMIB、Foveros、Co-EMIB等技术将为英特尔提供强大的能力,这些不同的技术针对不同的应用需求,可以有针对性地组合使用。

英特尔将先进封装技术将与其世界级制程工艺相结合,从晶体管再到整体系统层面的集成,为客户提供全面的解决方案。正如Jason Gorss所说,半导体行业发展非常迅速,正是由于英特尔这些独有的能力,可以帮助我们更好地预测高速发展的半导体行业可能会出现的各项问题,并且及时进行干预。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9009188.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存