纳米二氧化钛的改性方法很多, 近年来,人们主要从以下两个方面入手,提高 TiO2光催化剂的光谱
响应范围和光催化效率。
其一是通过掺杂等手段降低 TiO2的禁带宽度,增加其吸收波长。主要采用的方法有: 1)掺杂过渡金属: 金属离子掺杂可在半导体表面引入缺陷位置或改变结晶度,成为电子或空穴的陷阱而延长寿命2)表面光敏化:将光活性化合物化学吸附或物理吸附于催化剂表面从而扩大激发波长范围, 增加光催化反应的效率3)表面螯合及衍生作用: 含硫化合物、OH-和乙二胺四乙酸 (EDTA )等螯合剂能影响一些半导体的能带位置,使导带移向更负的位置。
其二是加入电子俘获剂,使光生电子和空穴有效分离,降低 e-和 h+的复合速率, 主要采用的方法有: 1)贵金属沉积: TiO2 表面沉积适量的贵金属, 有利于光生电子和空穴的有效分离以及降低还原反应(质子的还原、溶解氧的还原)的超电压, 大大提高了催化剂的活性, 研究最多的为 Pt的沉积, 其次Ag 、Pd和 Nb等金属的掺杂也能降低 TiO2 的带隙能2)复合半导体: 不同金属离子的配位及电负性不同而产生过剩电荷, TiO2与半导体复合后增加半导体吸收质子或电子的能力, 从而提高催化剂的活性。在二元复合半导体中, 两种半导体之间的能级差能使电荷有效分离3)电子捕获剂: 加入O2、H2O2和过硫酸盐等电子捕获剂, 可以捕获光生电子,降低 e-与 h+的复合几率, 从而提高光催化效率。
半导体材料有:
一、元素半导体:
在元素周期表的ⅢA族至IVA族分布着11种具有半导性的元素,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。
P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。
因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。
二、无机化合物半导体:
分二元系、三元系、四元系等。二元系包括:
1、Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有闪锌矿的结构。
2、Ⅲ-Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In和V族元素P、As、Sb组成,典型的代表为GaAs。它们都具有闪锌矿结构,它们在应用方面仅次于Ge、Si,有很大的发展前途。
3、Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和Ⅵ族元素S、Se、Te形成的化合物,是一些重要的光电材料。ZnS、CdTe、HgTe具有闪锌矿结构。
4、Ⅰ-Ⅶ族:Ⅰ族元素Cu、Ag、Au和Ⅶ族元素Cl、Br、I形成的化合物,其中CuBr、CuI具有闪锌矿结构。
5、Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族元素S、Se、Te形成的化合物具有的形式,如Bi2Te3、Bi2Se3、Bi2S3、As2Te3等是重要的温差电材料。
6、第四周期中的B族和过渡族元素Cu、Zn、Sc、Ti、V、Cr、Mn、Fe、Co、Ni的氧化物,为主要的热敏电阻材料。
7、某些稀土族元素Sc、Y、Sm、Eu、Yb、Tm与Ⅴ族元素N、As或Ⅵ族元素S、Se、Te形成的化合物。
三、有机化合物半导体:
已知的有机半导体有几十种,熟知的有萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,它们作为半导体尚未得到应用。
四、非晶态与液态半导体:
这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。
半导体材料的特点及优势:
半导体材料是一类具有半导体性能,用来制作半导体器件的电子材料。常用的重要半导体的导电机理是通过电子和空穴这两种载流子来实现的,因此相应的有N型和P型之分。
半导体材料通常具有一定的禁带宽度,其电特性易受外界条件(如光照、温度等)的影响。
不同导电类型的材料是通过掺入特定杂质来制备的。杂质(特别是重金属快扩散杂质和深能级杂质)对材料性能的影响尤大。
因此,半导体材料应具有很高的纯度,这就不仅要求用来生产半导体材料的原材料应具有相当高的纯度,而且还要求超净的生产环境,以期将生产过程的杂质污染减至最小。
半导体材料大部分都是晶体,半导体器件对于材料的晶体完整性有较高的要求。此外,对于材料的各种电学参数的均匀性也有严格的要求。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)