- 如果要掺杂成P型半导体可以选择B和BF和In.
-B是最常用的
-In和BF的质量比较大,适合于浅掺杂
-BF中的F可能对HCI或者NBTI等可靠性产生正影响,所以Poly中有一些可能有好处。
-如果选择掺杂成N型半导体可以选择P,As和Sb.
-P是最常用的。
-As质量比P中,通常最为浅掺杂。
-Sb通常最为Buried layer,因为扩散比较慢。
2)然后要选择掺杂浓度
-Well implant一般E13剂量
-Vt implant一般E12剂量
-Source/drain一般E15剂量
离子注入是离子参杂的一种。随着VLSI器件的发展,到了70年代,器件尺寸不断减小,结深降到1um以下,扩散技术有些力不从心。在这种情况下,离子注入技术比较好的发挥其优势。目前,结深小于1um的平面工艺,基本都采用离子注入技术完成掺杂。离子注入技术已经成为VLSI生产中不可缺少的掺杂工艺。………离子注入具有如下的特点①可以在较低温度下(400℃)进行,避免高温处理。②通过控制注入时的电学条件(电流、电压)可以精确控制浓度和结深,更好的实现对杂质分布形状的控制。而且杂质浓度不受材料固溶度的限制。③可选出一种元素进行注入,避免混入其他杂质。④可以在较大面积上形成薄而均匀的掺杂层。同一晶片上杂质不均匀性优于1%,且横向掺杂比扩散小的多。⑤控制离子束的扫描区域,可实现选择注入并进而发展为一种无掩模掺杂技术。…………离子注入技术应用领域2.1 离子注入应用于金属材料改性离子注入应用于金属材料改性,是在经过热处理或表面镀膜工艺的金属材料上,注入一定剂量和能量的离子到金属材料表面,改变材料表层的化学成份、物理结构和相态,从而改变材料的力学性能、化学性能和物理性能。具体地说,离子注入能改变材料的声学、光学和超导性能,提高材料的工作硬度、耐磨损性、抗腐蚀性和抗氧化性,最终延长材料工作寿命。离子注入提高工模具的耐磨性能、金属样品的抗疲劳性以及金属表面耐腐蚀性2 离子注入机应用于掺杂工艺在半导体工艺技术中,离子注入具有高精度的剂量均匀性和重复性,可以获得理想的掺杂浓度和集成度,使电路的集成、速度、成品率和寿命大为提高,成本及功耗降低。这一点不同于化学气相淀积,化学气相淀积要想获得理想的参数,如膜厚和密度,需要调整设备设定参数,如温度和气流速率,是一个复杂过程。上个世纪70年代要处理简单一个的n型金属氧化物半导体可能只需6~8次注入,而现代嵌入记忆功能的CMOS集成电路可能需要注入达35次。技术应用需要剂量和能量跨越几个等级,多数注入情况为:每个盒子的边界接近,个别工艺因设计差异有所变化。随着能量降低,离子剂量通常也会下降。具备经济产出的最高离子注入剂量是1016/cm2,相当于20个原子层。3 在SOI技术中的应用由于SOI技术(Silicon-on-Insulation)在亚微米ULSI低压低功耗电路和抗辐照电路等方面日益成熟的应用,人们对SOI制备技术进行了广泛探索。1966年Watanabe和Tooi首先报道通过O+注入形成SILF表面的Si氧化物来进行器件间的绝缘隔离的可能性。1978年,NTT报道用这项技术研制出高速、低功耗的CMOS链振荡电路后,这种注O+技术成为众人注目的新技术。从而注氧隔离技术即SIMOX就成了众多SOI制备技术中最有前途的大规模集成电路生产技术。1983年NTT成功运用了SIMOX技术大批生产了COMSBSH集成电路;1986年NTT还研制了抗辐射器件。这一切,使得NTT联合EATON公司共同开发了强流氧离子注入机(束流达100mA),之后EATON公司生产了一系列NV-200超强流氧离子注入机,后来Ibis公司也研制了Ibis-1000超强流氧离子注入。从此SIMOX技术进入了大规模生产年代。到了上世纪90年代后期,人们在对SIMOX材料的广泛应用进行研究的同时,也发现了注氧形成的SOI材料存在一些难以克服的缺点,如硅岛、缺陷,顶部硅层和氧化层的厚度不均匀等,从而导致了人们开始着眼于注氢和硅片键合技术相结合的智能剥离技术即SMART CUT技术的研制,上世纪90年代末期,H+离子注入成了新的热门话题。目前虽无专门的H+离子注入机,但随着SMART CUT工艺日趋成熟,不久将会出现专门的H+离子注入机。除了半导体生产行业外,离子注入技术也广泛应用于金属、陶瓷、玻璃、复合物、聚合物、矿物以及植物种子改良上。一、N型半导体
N型半导体也称为电子型半导体,即自由电子浓度远大于空穴浓度的杂质半导体。
形成原理
掺杂和缺陷均可造成导带中电子浓度的增高. 对于锗、硅类半导体材料,掺杂Ⅴ族元素,当杂质原子以替位方式取代晶格中的锗、硅原子时,可提供除满足共价键配位以外的一个多余电子,这就形成了半导体中导带电子浓度的增加,该类杂质原子称为施主. Ⅲ-Ⅴ族化合物半导体的施主往往采用Ⅳ或Ⅵ族元素. 某些氧化物半导体,其化学配比往往呈现缺氧,这些氧空位能表现出施主的作用,因而该类氧化物通常呈电子导电性,即是N型半导体,真空加热,能进一步加强缺氧的程度。
二、P型半导体
P型半导体一般指空穴型半导体,是以带正电的空穴导电为主的半导体。
形成
在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。
扩展资料
特点:
(一)、N型半导体
由于N型半导体中正电荷量与负电荷量相等,故N型半导体呈电中性。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
(二)、P型半导体
掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
参考资料来源:百度百科-N型半导体
参考资料来源:百度百科-P型半导体
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)