原文链接:https://xueqiu.com/7332265621/133496263
【 嵌牛导读 】 : 半导体的应用领域很广,在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,可以说是现代科技的骨架。半导体应用的关键领域便是集成电路。集成电路发明起源于美国,后来在日本加速发展壮大,到目前在韩国台湾分化发展。本文旨在介绍日本半导体的发家史,体会上世纪美日之间在半导体产业争霸上的血雨腥风,同时从中寻找一些我国科技产业的发展经验。
【 嵌牛鼻子 】 : 日本半导体产业
【 嵌牛提问 】 : 日本半导体产业是如何在美国技术封锁的牢笼中走向世界?
【 嵌牛内容 】
在集成电路行业,全球范围内的每一次技术升级都伴随模式创新,谁认清了技术、投资和模式间的关系,谁才能掌握新一轮发展主导权,在全球竞争中占据更为有利的地位,超大规模集成电路(VLSI)计划便是例证。日本的集成电路产业发展较早,在20世纪60年代便已经有了研究基础,发展至今经历了从小到大、从弱到强、转型演变的历史,其中从1976年3月开始实施的超大规模集成电路计划是一个里程碑。
日本集成电路的起点
在超大规模集成电路计划实施前,日本的集成电路行业已经有了一定的基础。作为冷战时期美国抵御苏联影响的桥头堡,日本的集成电路发展得到了美国的支持。1963年,日本电气公司便获得了仙童半导体公司的平面技术授权,而日本政府则要求日本电气将其技术与日本其他厂商分享。以此为起点,日本电气、三菱、夏普、京都电气都进入了集成电路行业。在日本早期的集成电路发展中,与美国同期以军用市场为主不同的是,日本在引进技术后侧重于民用市场。究其原因,第二次世界大战后,日本的军事建设受限,在美苏航天争霸的过程中日本的半导体技术只能用于民间市场。正是如此,日本走出了一条以民用市场需求为导向的集成电路发展之路,并在20世纪70年代和80年代一度赶超美国。
日本政府为集成电路的发展制定了一系列的政策措施,例如1957年制定的《电子工业振兴临时措施法》、1971年制定的《特定电子工业及特定机械工业振兴临时措施法》和1978年制定的《特定机械情报产业振兴临时措施法》,加上民用市场的保护使日本的集成电路具备了一定的基础。
20世纪70年代,在美国施压下,日本被迫开放其半导体和集成电路市场,而同期IBM正在研发高性能、微型化的计算机系统。在这样的背景下,1974年6月日本电子工业振兴协会向日本通产省提出了由政府、产业及研究机构共同开发“超大规模集成电路”的设想。此后,日本政府下定了自主研发芯片、缩小与美国差距的决心,并于1976—1979年组织了联合攻关计划,即超大规模集成电路计划,计划设国立研发机构——超大规模集成电路技术研究所。此计划由日本通产省牵头,以日立、三菱、富士通、东芝、日本电气五家公司为主体,以日本通产省的电气技术实验室、日本工业技术研究院电子综合研究所和计算机综合研究所为支持,其目标是集中优势人才,促进企业间相互交流和协作攻关,推动半导体和集成电路技术水平的提升,以赶超美国的集成电路技术水平。
项目实施的4年间共取得上千件专利,大幅提升了日本的集成电路技术水平,为日本企业在20世纪80年代的集成电路竞争铺平了道路,取得了预期的效果。把握世界竞争大势、研判未来发展方向,需要凝聚力量、统筹协调的专业认知作为支撑。尽管事后看,日本的超大规模集成电路计划实施效果非常理想,但是实施过程却并不顺利。根据前期测算,计划需投入3000亿日元,业界希望能够得到1500亿日元的政府资助,后来实施4年间共投入737亿日元,其中政府投入291亿日元。其间,自民党信息产业议员联盟会长桥木登美三郎多次努力,希望政府追加投入,但是未能如愿。政府投入未及预期,参与企业的士气受到了一定程度的打击。当时,参与计划的富士通公司福安一美说:“当时,大家都有一种被公司遗弃的感觉,而且并未料到竟然研制出向IBM挑战的产品。”
投入不及预期,再加上研究人员从各企业和机构间临时抽调、各行其道,一时间日本的超大规模集成电路计划开发很不顺利,不同研究室人员间互相提防、互不往来、互不沟通的现象十分普遍。 此时,垂井康夫站了出来。垂井康夫1929年出生于东京,1951年毕业于早稻田大学第一理工学院电气工学专业,1958年申请了晶体管相关的专利,是日本半导体研究的开山鼻祖,1976年超大规模集成电路技术研究会成立时被任命为联合研究所的所长。
垂井康夫在当时的日本业界颇具声望,他的领导使各成员都能信服。 垂井康夫对参与方进行积极的引导,指出参与方只有同心协力才能改变基础技术落后的局面,在基础技术开发完成后各企业再各自进行产品开发,这样才能改变在国际竞争氛围中孤军作战的困局。垂井康夫的努力,很快为研发人员所接受,各家力量得到了有效的融合,而历时4年的风雨同舟、协同努力成了日本集成电路产业发展的最好推力。除垂井康夫外,当时已从日本通产省退休的根岸正人功不可没。当时,超大规模集成电路技术研究会设理事会,日立公司社长吉ft博吉担任理事长,但是在真正的执行过程中,根岸正人发挥了很好的协调作用。
根岸正人有多年推动大型国家研究计划的经验,他对计划各参与方的能力、利益诉求都颇为了解,在计划中通过其有效的沟通化解了冲 突,为垂井康夫成功地凝聚团队做了背后的铺垫。 可以看出,在集成电路的研发攻关中,除了资金和资源投入外,团队协调和技术融合更是成功的关键。
从超大规模集成电路计划的组织架构来看,除垂井康夫领导的联合研究所外,先前成立的两个联合研究机构也参与了超大规模集成电路计划,分别是日立、三菱、富士通联合建立的计算机综合研究所,以及由日本电气和东芝联合成立的日电东芝信息系统。三个研究所分别从事超大规模集成电路、计算机和信息系统的研发,其中联合研究所负责基础及通用技术的研发,另两个研究所则负责实用化技术开发(重点为64KB及256KB内存芯片的设计及开发)。在各方的协同努力下,参与方都派遣了其最优秀的工程师。来自各地的工程师们肩并肩地在同一研究所内共同工作、共同生活、集中研 究,在微细加工技术及相关设备、硅晶圆的结晶技术、集成电路设计技术、工艺技术和测试技术上取得了突破。其中,联合研究所主要负责微细加工技术及相关设备、硅晶圆的结晶技术的攻关,其他技术的通用部分也由其负责,实用化的开发则由另两个研究所负责。
具体来看,六个研究室中,分别由不同企业负责协调:第一、第二、第三研究室主要攻关微细加工技术,分别由日立、富士通和东芝负责协调;第四研究室攻关结晶技术,由工业技术研究院电子综合研究所负责协调;第五研究室负责工艺技术,由三菱负责协调;第六研究室攻关测试、评价及产品技 术,由日本电气负责协调。微细加工技术是计划的重心,从联合研究所的研究成果来看,日本当时开发了三种电子束描绘装置、电子束描绘软件、高解析度掩膜及检查装置、硅晶圆含氧量及碳量的分析技术等。垂井康夫评估说,计划实施完毕后日本的半导体技术已和IBM并驾齐驱。在计划中,日本企业对于动态随机存储器有了深入的理解,其更高质量、更高性能的动态随机存储器芯片为日本赶超美国提供了机遇。
从1980年至1986年,日本企业的半导体市场份额由26%上升至45%,而美国企业的半导体市场份额则从61%下滑至43%。 1980年,联合研究所的研究工作已全部结束,而另两个研究所则追加资金(共约1300亿日元)作进一步的技术开发, 以1980年至1982年为第一期,1983至1986年为第二期。 这些系统化的布局为日本的半导体行业腾飞发挥了至关重要的作用。
从人员来看,计划开展期间的联合研究所研发人员数量为100人左右,计算机综合研究所的研发人员数量为400人左右,日电东芝信息系统则为370人左右。在后续投入阶段,研究人员数量减少,1985年计算机综合研究所研发人员已减至90人左右,而日电东芝信息系统则减至30人左右。尽管联合研究所研发人员相对较少,但事关各企业的未来发展基础,因此各企业都派遣一流人才参与。在此过程中,垂井康夫对各企业都十分了解,点名要求各企业派遣其看中的人才。
在实施超大规模集成电路计划及后续的资助计划后,1986年日本半导体产品已占世界市场的45%,超越美国成为全球第一半导体生产大 国。 1989年,在存储芯片领域,日本企业的市场份额已达53%,与美国该领域37%的市场份额形成了鲜明对比。 在日本企业的巅峰时期,日本电气、东芝和日立三家企业排名动态存储器领域的全球前三,其市场份额甚至超90%,与之相比,美国德州仪器和镁光科技则苦苦支撑。
美、日将联手研发2nm芯片
美、日将联手研发2nm芯片,日美两国将启动次世代芯片(2纳米芯片)的量产研发,力拼在2025年量产,此时间点也与台积电、三星所喊出的2纳米目标一致。美、日将联手研发2nm芯片。
美、日将联手研发2nm芯片1目前全球能做到2nm工艺的公司没有几家,主要是台积电、Intel及三星,日本公司在设备及材料上竞争力有优势,但先进工艺是其弱点,现在日本要联合美国研发2nm工艺,不依赖台积电,最快2025年量产。
日本与美国合作2nm工艺的消息有段时间了,不过7月29日日本与美国经济领域有高官会面,2nm工艺的合作应该会是其中的重点。
据悉,在2nm工艺研发合作上,日本将在今年内设立次世代半导体制造技术研发中心(暂定名),与美国的国立半导体技术中心NSTC合作,利用后者的设备和人才研发2nm工艺,涉及芯片涉及、制造设备/材料及生产线等3个领域。
这次的研发也不只是学术合作,会招募企业参加,一旦技术可以量产,就会转移给日本国内外的企业,最快会在2025年量产。
对于日美合作2nm并企图绕过台积电一事,此前台积电方面已有回应,台积电称,半导体产业的特性是不管花多少钱、用多少人,都无法模仿的,要经年累月去累积,台积电20年前技术距最先进的技术约2世代,花了20年才超越,这是坚持自主研发的结果。
台积电不会掉以轻心,研发支出会持续增加,台积电3nm制程将会是相当领先,2nm正在发展中,寻找解决方案。
美、日将联手研发2nm芯片2现在全球最先进的芯片约有9成是由台积电生产,各国想分散风险以确保更稳定的供应,像是日本与美国将在半导体产业进行合作,日经新闻29日报道,日美两国将启动次世代芯片(2纳米芯片)的量产研发,力拼在2025年量产,而此时间点也与台积电、三星所喊出的2纳米目标一致。
报道指出,日美强化供应链合作,日本将在今年新设一个研发据点,其为和美国之间的窗口,并将设置测试产线,值得注意的是,日美也将在本月29日,于华盛顿首度召开外交经济阁僚协议“经济版2+2”,上述2纳米合作将纳入该协议的联合声明。
报道提到,日本将在今年新设次世代半导体制造技术研发中心,并将活用美国国立半导体技术中心的设备和人才,着手进行研发。因美国拥有Nvidia、高通等企业,而在芯片量产不可或缺的.设备、材料上,日本企业包括东京威力科创、Screen Holdgins、信越化学、JSR等拥有很强的竞争力,为日美合作奠下基础。
报道称,全球10纳米以下芯片产能,台湾市占率高达9成,台湾企业也计划在2025年开始生产2纳米芯片,不过日美忧心台海冲突恐升高,两国的目标是即便“台湾有事”,也能确保先进芯片的供应数量。
美、日将联手研发2nm芯片3据媒体报道,日美两国将通过经济协商,就确保新一代半导体安全来源的共同研究达成协议。7月29日,日本外务大臣林吉正(Yoshimasa Hayashi)和贸易大臣萩生田光一(Koichi Hagiuda)将在华盛顿与美国国务卿布林肯(Antony Blinken)和商务部长雷蒙多(Gina Raimondo)举行第一轮经济“二加二”会谈,预计供应链安全将是一个主要议题。
据悉,日本将于今年年底建立一个联合研发中心“新一代半导体制造技术开发中心(暂定名)”,用于研究2纳米半导体芯片。该中心将包括一条原型生产线,并将于2025年开始量产半导体。建立该中心的协议将列入会议结束后发表的声明中。报道还表示,产业技术综合研究所、理化学研究所、东京大学将是新中心的参与者之一,其他企业也可能被邀请参与。
从产业链来看,美国和日本在半导体领域中有很强的互补性。上世纪80-90年代,日本半导体在美国的打压之下,其半导体制造环节基本从全球半导体制造格局中退出,转而布局上游半导体材料和设备。目前日本在半导体材料和半导体设备领域两大环节拥有优势,特别是半导体材料领域的“垄断”地位。
代表性企业为大硅片(日本信越、Sumco)、掩膜版(日本DNP、Toppan)、光刻胶(日本JSR、东京应化、富士电子材料)、溅射材料(日矿金属、日本东曹、住友化学等)。
美国则在半导体设备业在全球同样处于垄断地位,拥有除光刻机以外几乎所有的设备生产能力,如应用材料。在EDA工具、IP及计算光刻软件等领域,美国处于绝对垄断地位,主要为Cadence、Synopsys、Siemens EDA三大巨头垄断。
整体来看,美国和日本在半导体材料、设备、设计领域占据优势,加之两国“紧密”的政治关系,在先进芯片工艺研发上有先天的优势与基础。在很大程度上,对美国提出“四方芯片联盟”,美日两国有最“坚定”的政治可能和经济基础。
至于为什么急于发展2纳米先进工艺,主要有以下两点:一是芯片是所有高科技产业的“底座”,是综合国力竞争的制高点,加之疫情以来的芯片短缺,让美日进一步认识到半导体制造的重要性;二是东亚晶圆代工实力强劲,规模庞大,除了台积电、三星之外,中国大陆芯片代工发展迅速,比如中芯国际、华虹半导体;三是推动高端产业链本土化回迁,掌控科技竞争主动权。
日本半导体产业崛起于战后,日本半导体产业的成功,主要体现在20世纪80年代DRAM的赶超和超越美国。21世纪,智能手机开创了新的市场,成为电子产业的主角,从而在技术和需求上影响半导体产业。日本当下立断做出了发展半导体产业的决定,虽然反应并不是非常充分,但仍在这种环境下增加了不少集成电路和导体元件的产量。
但在现今社会英雄辈出的年代,日本半导体产业的发展难免显得有些“凄凉”。一是当下的市场发生了很多不可逆转的改变,二就是很多国家也早已经意识到半导体产业的发展能给国家带来很大的利益。在这种情况下抢占先机发展半导体市场自然也就比日本要强劲不少。
要是说日本半导体发展的前景如何,就个人观点认为还是很不错的,半导体材料等产业还是急需大量的人才,但是如果想继续发展壮大,无疑对于日本来说还有很长的一段路要走。
诚然,CPU是能够造出来的,但是在建造的过程和时间来说,对于日本却并不是那么有利。一方面是来自各个国家的压力,另一方面就是自身还存在着不少的技术问题有待解决。如何想走得远,如何能走得更远,也取决于时代的机遇和世界的新兴科技发展的浪潮。
日本曾经兴盛一时的半导体产业也许在未来几十年能够重现当初的强盛,也或许就在时代的浪潮中悄无声息地消失。一切尚未可知。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)