其次,硅可以说是神赐予人类的材料,有非常多优良性质,也只有硅单晶的这些性质,才能够使大规模集成电路成为可能。
1.硅可使用熔融法拉单晶,单晶尺寸很容易做大,并且制备的硅晶圆纯度极高,位错密度极低。
硅单晶纯度99.999999999%(11个9,11N),GaN单晶纯度7N
硅单晶穿线位错是个位数量级,甚至有无位错硅单晶,而GaN单晶穿线位错密度在每平方厘米百万量级
硅可以做到12寸晶圆,GaN单晶只有4寸
并且因为GaN无法使用熔融法拉单晶,制造成本很高,6寸硅晶圆150元/片,2寸氮化镓晶圆1万元/片
2.硅可以通过热氧化制出厚度极均匀,密度极高的二氧化硅绝缘膜。
集成电路的基元是MOSFET,这种器件的栅极控制器件通断,金属和半导体之间需要一层氧化物形成特殊的能带结构,以便于用栅极电压控制源漏电路的通断
而集成电路规模越大,器件尺寸越小,需要的栅极氧化物也越薄,这个时候栅极氧化物的均匀性就非常重要
通过控制硅晶圆表面温度均匀性,可以在12寸硅晶圆表面通过高温热氧化形成厚度均匀性在纳米量级的二氧化硅层,使大规模集成电路成为可能。可以做一个类比,如果硅晶圆面积和地球表面积一样大,那么就相当于在地球表面形成一层厚度均匀性在1m以内的土墙,这样一想是不是觉得蛮不可思议的
当然现在有了原子层沉积技术,对于III-V族氮化物形成均匀膜层也并非不可能,但是膜层密度和制造成本相较硅还是高很多
3.在地球上硅储量及其丰富,价格及其便宜。
地壳中的元素含量依次是氧,硅,铝。。。
硅元素含量排第二位,比如沙子基本就是二氧化硅,而硅晶圆的原材料其实就是沙子
Ga这种元素就少多了,而且开采很不容易,一般都是铝矿的伴生矿,现在1kg大概3000元的样子,想想1kg沙子多少钱,就知道如果CPU变成GaN做的你还有没有可能用得起了。。
最后,我要说明一下,虽然有上述问题,让III-V族材料难以广泛应用于大规模集成电路,但是并不是说III-V族半导体材料就完全没机会。
III-V族半导体材料可以制备高性能光电、功率和微波射频器件,控制这些器件的电路如果用硅集成电路来做,需要用bonding做电链接,难以小型化,还会有其他一些问题
如果能直接使用III-V族半导体材料做逻辑电路,哪怕关键尺寸(CD)不像硅那么小(就是平时说的14nm制程,GaN一般在1μm,也就是说同样面积可以放100个硅MOS,只能放1个GaN器件),成本高一点,也不是不能接受,所以一直有人在往这个方向努力
硅、氮化镓。第一代就是我们说的硅,是比较成熟的;第二代主要是以氮化镓和InP,我之前也从事了很多年砷化镓和银铃的工作;第三代主要是基于大功率应用、高压、高射频应用的,比如像氮化镓和碳化硅的产品。通常所说的III-V半导体是由上述IIIA族和VA族元素组成的两元化合物,它们的成分化学比都是1:1。半导体的导电能力取决于他们的纯度。完全纯净或本征半导体的导电能力很低,因为他们只含有很少的热运动产生的载流子。某种杂质的添加能极大的增加载流子的数目。这些掺杂质的半导体能接近金属的导电能力。轻掺杂的半导体可能在每十亿中只有一小部分。由于在硅中杂质的有限的固体溶解性,即使重掺杂的半导体每百万中也只有几百个杂质而已。由于半导体对于杂质的极度敏感性,很难制造真正的本征物质。因此实际上半导体器件几乎都是由掺杂物质制造的。掺有磷的半导体就是一种掺杂半导体。假设硅晶体中已掺入少量的磷。磷原子进入了原本该由硅原子占有的晶体结构中的位置(见图上方)。磷,作为第5组元素,由5个价电子。磷原子共享了4个价电子给它周围的4个硅原子。4对电子对给了磷原子8个共享的电子。加上还有1个未共享的电子,一共由9个价电子。由于valence shell只能容纳8个电子,再也放不下第9个电子。这个电子就被磷原子抛了出来,自由地游荡在晶体结构中。每个添加进硅晶体结构中的磷原子能产生一个自由电子。
由于第9个电子的丢失,磷原子带正电。尽管这个原子离子化了,但它没有产生空穴。空穴是由满的valence shell中的电子的离开而产生的电子空缺。尽管磷原子带正电,但它有满的valence shell。因此离子化的磷原子带的电荷是不可移动的。
其他第5组的元素有和磷相同的效果。每个加入到晶体结构中的第5组的元素都会产生一个自由电子。因此以这种方式捐赠电子给半导体的元素被称为donors。砷,锑和磷在半导体工艺中被作为硅的donors。
在掺入大量的donors的半导体中占有优势的电子作为载流子。由于热运动产生的空穴还是有的,但他们的数量由于有大量的电子而减少。因为大量的电子增加了空穴捕获电子而复合的可能性。在N型硅中的大量的自由电子极大地增加了它的导电能力(并且极大地降低了它的电阻)。
掺入donors的半导体称作N型。重掺杂的N型硅有时也被标记为N+,轻掺杂的N型硅被标记为N-。加号和减号象征了donors的相对数目,而不是电荷。在N型硅中由于电子的数目非常大,他们被称为多数载流子。相似的,空穴在N型硅中被称为少数载流子。严格来说,本征半导体没有多数载流子也没有少数载流子,因为他们两种的数目是相等的。
掺硼的硅形成了另一种掺杂半导体。假设硅晶体结构中掺入了少量的硼原子(见图下方)。作为第3组的元素,硼有3个价电子。硼原子和它周围的4个硅原子共享价电子,但,由于它只有3个,它不能形成第4个键。结果,硼原子只有7个价电子。由此而形成的电子空缺就变成了一个空穴。这个空穴是可移动的,很快它就离开了硼原子。一旦空穴离开后,硼原子就由于在valence shell中多出来的一个电子而带负电。跟磷的情况一样,这个电荷是不可移动的,而且对导电能力没有影响。每个加入到硅中的硼原子能产生一个可移动的空穴。
其他的第3组的元素也能接受电子并产生空穴。技术困难阻止了其他第3组元素在硅的生产中的应用。但是,铟有时用来掺入锗。用作杂质的任何第3组元素都会从邻近的原子那里接受电子,所以这些元素被称为acceptors。掺有acceptors的半导体是P型的。重掺杂的P型硅有时被标记为P+,轻掺杂的P型硅被标记为P-。在P型硅中空穴是多数载流子,电子是少数载流子。半导体能同时掺入acceptors和donors。量大的杂质决定了硅的型号和载流子的浓度。因此能通过加入更多的donors来把P型半导体转换为N型半导体。同样的,也能通过加入更多的acceptors来把N型半导体转换为P型半导体。故意添加对立极性的杂质来转换半导体的型号被称为counterdoping。大多数现代的半导体是用有选择性的counterdoping硅来制作的,来形成一系列的P-和N-型区域。
如果采用极端的couterdoping,整个晶体结构将由相同比例的acceptor和donor原子组成。这两种原子的数目将会完全相等。最终的晶体只有很少的载流子,并表现为一个本征半导体。这种复合半导体确实存在。最熟悉的例子就是砷化镓,它是一种镓(第3组元素)和砷(第5组元素)的化合物。这种物质被称为III-V复合半导体。他们不仅有砷化镓,还有磷化镓,锑化铟和其他许多。许多III-V化合物是direct-bandgap半导体,有些被用来生产发光二极管和半导体激光。砷化镓也被用来生产非常高速的固态器件,包括集成电路。II-VI复合半导体由第2组和第6组元素的同比列混合物组成。硫化镉就是一种典型的用来生产光敏元件的II-VI化合物。其他II-VI化合物被用作阴极射线管中的磷。最后一种半导体包括IV-IV化合物,比如碳化硅,最近被小范围用来生产蓝光LEDs。
在所有的半导体中,只有硅有大批量,低成本生产集成电路的所需的物理特性。绝大多数固态器件是用硅生产的,其他半导体则只有很小的市场份额
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)