硅化物的集成电路中的金属硅化物[2]

硅化物的集成电路中的金属硅化物[2],第1张

钛硅化物TiSi2:钛硅化物TiSi2因具有工艺简单、高温稳定性好等优点,被最早广泛应用于0.25微米以上MOS技术。其工艺是首先采用诸如物理溅射等方法将Ti金属沉积在晶片上,然后经过稍低温度的第一次退火(600~700℃),得到高阻的中间相C49,然后再经过温度稍高的第二次退火(800~900℃)使C49相转变成最终需要的低阻C54相 。

对于钛硅化物而言,最大的挑战在TiSi2的线宽效应。即TiSi2电阻会随着线宽或接触面积的减小而增加。原因是当线宽变得过窄时,从C49相到C54相的相变过程会由原先的二维模式转变成一维模式,这使得相变的温度和时间将大大增加。而过高的退火温度会使主要的扩散元素Si扩散加剧而造成漏电甚至短路的问题。因此随着MOS尺寸的不断变小,会出现TiSi2相变不充分而使接触电阻增加的现象 。

钴硅化物CoSi2:钴硅化物作为钛硅化物的替代品最先被应用于从0.18微米到90纳米技术节点,其主要原因在于它在该尺寸条件下没有出现线宽效应。另外,钴硅化物形成过程中的退火温度相比于钛硅化物有所降低,有利于工艺热预算的降低。同时由于桥通(bridge)造成的漏电和短路也得到改善 。

虽然在90纳米及其以上尺寸,从高阻的 CoSi到低阻的CoSi2的成核过程还十分迅速,在CoSi2相变过程中没有出现线宽效应。但当技术向前推进到45纳米以下时,这种相变成核过程会受到极大的限制,因此线宽效应将会出现。另外,随着有源区掺杂深度不断变浅,钴硅化物形成过程中对表面高掺杂硅的过度消耗也变得不能满足先进制程的要求。MOS进入45纳米以后,由于短沟道效应(short channel effect)的影响对硅化物过程中热预算提出了更高的要求。CoSi2的第二次退火温度通常还在700℃以上,因此必须寻找更具热预算优势的替代品 。

镍硅化物NiSi:对于45纳米及其以下技术节点的半导体制程,镍硅化物(NiSi)正成为接触应用上的选择材料。相对于之前的钛钴硅化物而言, 镍硅化物具有一系列独特的优势。镍硅化物仍然沿用之前硅化物类似的两步退火工艺,但是退火温度有了明显降低(<600oC), 这样就大大减少对器件已形成的超浅结的破坏。从扩散动力学的角度来说,较短的退火时间可以有效地抑制离子扩散。因此,尖峰退火(spike anneal)越来越被用于镍硅化物的第一次退火过程。该退火只有升降温过程而没有保温过程,因此能大大限制已掺杂离子在硅化物形成过程中的扩散 。

以金属-氧化物-半导体(MOS)场效应晶体管为主要元件构成的集成电路 。简称MOSIC 。1964年研究出绝缘栅场效应晶体管。直到1968年解决了MOS器件的稳定性,MOSIC得到迅速发展。与双极型集成电路相比,MOSIC具有以下优点:①制造结构简单,隔离方便。②电路尺寸小、功耗低适于高密度集成。③MOS管为双向器件,设计灵活性高。④具有动态工作独特的能力。⑤温度特性好。其缺点是速度较低、驱动能力较弱。一般认为MOS集成电路功耗低、集成度高,宜用作数字集成电路;双极型集成电路则适用作高速数字和模拟电路。

按晶体管的沟道导电类型,可分为P沟MOSIC、N沟MOSIC以及将P沟和N沟MOS晶体管结合成一个电路单元的互补MOSIC,分别称为PMOS 、NMOS和CMOS集成电路。随着工艺技术的发展,CMOS集成电路已成为集成电路的主流,工艺也日趋完善和复杂,由P阱或N阱CMOS发展到双阱CMOS工艺。80年代又出现了集双极型电路和互补金属-氧化物-半导体(CMOS)电路优点的BiCMOS集成电路结构。按栅极材料可分为铅栅、硅栅、硅化物栅和难熔金属(如钼、钨)栅等MOSIC,栅极尺寸已由微米进入亚微米(0.5~1微米)和强亚微米(0.5微米以下)量级 。此外,还发展了不同的MOS集成电路结构的MOSIC:如浮栅雪崩注入MOS(FAMOS)结构,用于可擦写只读存贮器;扩散自对准MOS(DMOS)结构和V型槽MOS结构等,可满足高速、高电压要求。近年来发展了以蓝宝石为绝缘衬底的CMOS结构,具有抗辐照、功耗低和速度快等优点。MOSIC广泛用于计算机、通信、机电仪器、家电自动化、航空航天等领域,可使整机体积缩小、工作速度快、功能复杂、可靠性高、功耗低和成本便宜等。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9050314.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存