在本征半导体中掺入微量杂质形成杂质半导体后,其导电性能将发生显着变化。按掺入杂质的不同,杂质半导体可分为N型半导体和P型半导体。
N型半导体
如果在本征半导体硅(或锗)中掺入微量5价杂质元素,如磷、锑、砷等,由于杂质原子的最外层有5个价电子,当其中的4个与硅原子形成共价键时,就会有多余的1个价电子。这个电子只受自身原子核的吸引,不受共价键的束缚,室温下就能变成自由电子,如图2.2(a)所示。磷(或锑、砷)原子失去一个电子后,成为不能移动的正离子。掺入的杂质元素越多,自由电子的浓度就越高,数量就越多。并且在这种杂质半导体中,电子浓度远远大于空穴浓度。因此,电子称为多数载流子(简称多子),空穴称为少数载流子(简称少子)。在外电场的作用下,这种杂质半导体的电流主要是电子电流。由于电子带负电荷,因此这种以电子导电为主的半导体称为N型半导体。
P型半导体
如果在本征半导体硅(或锗)中掺入微量3价元素,如硼、镓、铟等,由于杂质原子的最外层有3个价电子,当它和周围的硅原子形成共价键时,将缺少1个价电子而出现1个空穴,附近的共价键中的电子很容易来填补。如图2.2(b)所示。硼(或镓、铟)原子获得1个价电子后,成为不能移动的负离子,同时产生1个空穴。所以,掺入了3价元素的杂质半导体,空穴是多数载流子,电子是少数载流子。在外电场的作用下,其电流主要是空穴电流。这种以空穴导电为主的半导体称为P型半导体。
综上所述,在本征半导体中掺入5价元素可以得到N型半导体,掺入3价元素可以得到P型半导体。在N型半导体中,由于自由电子数目大大增加,增加了与空穴复合的机会,因此空穴数目便减少了同样,在P型半导体中,空穴数目大大增加,自由电子数目较掺杂前减少了。由此可知,多数载流子的浓度取决于掺杂浓度而少数载流子的浓度受温度影响很大。
本征半导体中电子和空穴的浓度相等,而掺杂半导体中电子和空穴的浓度差异相当大。在动态平衡条件下,N型半导体和P型半导体中少数载流子的浓度满足下列关系:
pi·ni=pp·np=pn·nn
式中,pi,ni,pp,np,pn,nn分别为本征半导体,P型半导体和N型半导体中的空穴浓度和电子浓度。
应当注意的是,掺杂后对于P型半导体和N型半导体而言,尽管都有一种载流子是多数载流子,一种载流子是少数载流子,但整个半导体中由于正负电荷数是相等的,它们的作用相互抵消,因此保持电中性。
希望能帮到您!
(1)硅的主要来源是石英砂(二氧化硅),硅元素和氧元素通过共价键连接在一起。因此需要将氧元素从二氧化硅中分离出来,换句话说就是要将硅还原出来,采用的方法是将二氧化硅和碳元素(可以用煤、焦炭和木屑等)一起在电弧炉中加热至2100°C左右,这时碳就会将硅还原出来。化学反应方程式为:SiO2 (s) + 2C (s) = Si (s) + 2CO (g)(吸热)
(2)
上一步骤中得到的硅中仍有大约2%的杂质,称为冶金级硅,其纯度与半导体工业要求的相差甚远,因此还需要进一步提纯。方法则是在流化床反应器中混合冶金级硅和氯化氢气体,最后得到沸点仅有31°C的三氯化硅。化学反应方程式为:Si (s) + 3HCl (g) = SiHCl3 (g) + H2 (g)(放热)
(3)
随后将三氯化硅和氢气的混合物蒸馏后再和加热到1100°C的硅棒一起通过气相沉积反应炉中,从而除去氢气,同时析出固态的硅,击碎后便成为块状多晶硅。这样就可以得到纯度为99.9999999%的硅,换句话说,也就是平均十亿个硅原子中才有一个杂质原子。
(4)
进行到目前为止,半导体硅晶体对于芯片制造来说还是太小,因此需要把块状多晶硅放入坩埚内加热到1440°C以再次熔化 。为了防止硅在高温下被氧化,坩埚会被抽成真空并注入惰性气体氩气。之后用纯度99.7%的钨丝悬挂硅晶种探入熔融硅中,晶体成长时,以2~20转/分钟的转速及3~10毫米/分钟的速率缓慢从熔液中拉出:
探入晶体“种子”
长出了所谓的“肩部”
长出了所谓的“身体”
这样一段时间之后就会得到一根纯度极高的硅晶棒,理论上最大直径可达45厘米,最大长度为3米。
以上所简述的硅晶棒制造方法被称为切克劳斯法(Czochralski process,也称为柴氏长晶法),此种方法因成本较低而被广泛采用,除此之外,还有V-布里奇曼法(Vertikalern Bridgman process)和浮动区法(floating zone process)都可以用来制造单晶硅。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)