我国的军备芯片是14纳米,而美国是5纳米,这有何影响?

我国的军备芯片是14纳米,而美国是5纳米,这有何影响?,第1张

信息处理能力上的巨大差距是致命的,各位都不知道商用处理器+加固机柜即可解决吗?

越是特殊用途的芯片,考虑的更多的不是制程的先进,而是制品的可靠。所谓5nm顶级芯片就是个过度消费的伪概念。目前的战争中这类芯片处于绝对不会用的地位,一个电磁脉冲,全部都会失效。俄罗斯的IC工艺更加落后,这并不妨碍军备的发展。美军并不会害怕高度科技化的对手,他们只害怕高度政治化的对手。这一点,从他们的文宣里面暴露的很充分。

在芯片制造的环节,比如台积电和中芯,它们技术上的差距最大的是不是就是光刻机?假如中芯能拿到和台积电一样的光刻机,差距是不是能快速缩小?或者说在制造环节,除了光刻机这个工具以外有什么东西是芯片厂自己的技术核心呢?

1,最大差距不是光刻机,而且工艺技术,也就是用光刻机等一系列设备把芯片做出来的水平。你做饭光靠菜刀先进就行了吗?半导体工艺涉及到物理,化学,材料,机械,电子,计算机等多学科的模拟,计算和实践应用。你 *** 作设备做工艺报出来的是信号和数据,工程师需要对数据进行分析,再设计实验,调整参数。这就是提高工艺的过程。

2,光刻工艺和沉积,离子注入,刻蚀,CMP等一系列工艺组成了半导体制造工艺。而这些工艺的设备基本上都被欧美日垄断,国产化不到20%。

3,中芯国际的193DUV光刻机目前做到N7完全够用。

4,在其他很多设备方面,比如刻蚀设备,缺陷检测设备,中芯国际拥有的设备的先进程度都是最新款的,和台积电N5的设备水平相当。做不好芯片就像一个大厨光有菜刀没有厨艺一样。

半导体制造商的核心技术就是它的工艺,业内称之为“recipe”,反映在设备上就是由一系列参数组成的模型/程序。设备会根据这模型/程序去计算,指挥设备来完成工艺。如果设备不稳定,比如recipe算出来的东西过一段时间就飘得厉害,对制程是非常有害的。所以这么精密娇贵的设备能保持很好的稳定性也是非常重要的。

说白了就是手机,电脑所需要的极致工艺芯片对现代武器所需的芯片有巨大的技术余量。至少在当下130纳米与5纳米之间让武器效能的提升有限,反而让其可靠性,稳定性有所下降,一味的追求极致制程对于武器制造来说这基本上是得不偿失的举措。如果真有大效果,各个武器大国都会加大投入,往里面砸大钱。

至于你说的航发芯片提升也就是在保证可靠性前提下做的随大流的技术迭代。毕竟谁也无法确定未来芯片工艺是否会极大的影响武器效能。军事上的可靠性感觉还包括应对电磁波干扰的能力,理论上说一定强度的电磁波会在电子元件内部产生感应电流,然后感应电流大到一定程度会对半导体元件产生击穿效应,如果是热击穿的话可能芯片直接就废了。

电磁干扰应该分成电场辐射噪声和磁场辐射噪声,具体表现在MOS里面的噪声电流。一般来说,因为工作频率高,射频模块应该都会带阻挡,吸收电磁波的屏蔽结构,来降低板子上不同模块之间的电磁干扰。

打个比方,假如美军一个飞机技术定型的时候最先进的计算机用的是486,那它就用486,过了二十年有了四核了也不会再换,因为不能保证换了这一个件会不会造成连锁反应,比如不兼容啥的;而我们的飞机研发的晚,那会最先进的电脑用的是奔腾,那我们的飞机用的就是奔腾。台积电目前协助美国生产F-35战机运算芯片,同时也是美国多家科技巨头Apple、AMD、Xilinx和Qualcomm的主要供应商。

由于芯片涉及美国核心军事科技,出于国家安全层面考量,美国政府希望台积电将军用芯片产线转移至美国,并称美国在这方面不打算退让。 这就是台积电赴美建厂的主要原因,而且还是最先进的5nm工艺, 这还只是其中冰山一角。

从侧面也反应出美国先进芯片工艺开始落后,不得不依赖东亚供应商。你说先进制程工艺对军事没用? 我怀疑美国无人机,人工智能电子对抗系统等等都用了先进制程芯片。最早的opamp就是为了破解密码而研制出来的,组成了最早的由集成电路组成的计算机。

现在破解密码用到的超级计算机的性能应该受到计算机架构设计的影响更大。就像我国的超级计算机使用的并不是最先进的数字逻辑芯片作为处理器(事实上美国应该是禁运的),但是体系结构上的特殊设计让我国的超级计算机曾经问鼎世界第一,并不是说靠处理器的性能优秀,制程先进就可以,超算是很庞大的系统工程,不是芯片的简单堆叠。当然系统这一级别我了解的不是很多,只是课上学过一些,我是做模拟集成电路的,偏向底层。

快速热处理(Rapid thermal processing, RTP)是将晶片快速加热到设定温度,进行短时间快速热处理的方法,热处理时间通常小于1~2分钟。过去几年间,RTP已逐渐成为先进半导体制造必不可少的一项工艺,用于氧化、退火、金属硅化物的形成和快速热化学沉积。

RTP系统采用辐射热源对晶片进行一片一片的加热,温度测量和控制通过高温计完成。而之前传统热处理工艺采用的是批处理式高温炉,一大批晶片在同一炉管中同时受热。批处理高温炉的使用仍然很广泛,它更加适合于处理时间相对较长(超过10分钟)的热处理过程。

RTP技术的使用范围很广。它可以快速升至工艺要求的温度(200~1300℃),并快速冷却,通常升(降)温速度为20~250℃/秒此外,RTP还可以出色地控制工艺气体。因此,RTP可以在一个程式(recipe)中完成复杂的多阶段热处理工艺。RTP快速升温、短时间快速处理的能力很重要,因为先进半导体制造要求尽可能缩短热处理时间、限制杂质扩散程度。用RTP取代慢速热处理工艺还可以大大缩短生长周期,因此对于良率提升阶段来说RTP技术特别有价值。

RTP系统有多种加热结构、热源和温度控制方法。其中,利用多排卤化钨灯对晶片进行加热是最常用的方法,因为它提供的热源易控制、方便、有效、加热速度快。RTP系统中,热源直接面对晶片表面,而不是象批处理高温炉一样对晶片边缘进行加热。因此,RTP系统处理大直径晶片时不会影响工艺处理的均匀性和升(降)温速度。通常,RTP系统还有晶片旋转功能,使热处理均匀性更佳。

目前最先进的RTP系统可以将晶片表面的温度分布精确控制在3s<2℃的范围内。然而,晶片表面的器件分布图形(pattern)会给温度带来一些影响和限制。因为RTP系统加热晶片时采用的是辐射性热源,温度会受到光学性质的影响。随着器件尺寸的不断微缩和对工艺处理均匀性的要求变得更加苛刻,如何优化加热结构、减小“图形效应”已成为一个重要的研究领域。解决“图形效应”的办法有很多,包括减少晶片表面入射能量的双面加热方法,以及采用与晶片温度接近的热源对有图形的一面进行照射的方法。

RTP的另一关键因素是温度的测量和控制。图1为采用高温计控制的RTP系统示意图,高温计测量的是晶片背面温度。早期的RTP系统有重复性差的问题,因为晶片背面涂层不同时,光谱发射率会有所变化,从而导致温度读数错误。现在的RTP系统含有复杂的发射率校正系统,热处理重复性很好。

RTP的一个重要应用是活化离子注入杂质,形成超薄结合。这一工艺要求热处理系统具有快速升温和冷却功能,因为离子注入后,必须将晶片加热到约1050°C进行高温退火,除去离子注入引起的损伤,并活化注入的杂质,同时必须缩短高温处理时间,尽可能减少杂质离子的扩散。为此,人们又开发了尖峰退火(spike-anneal)方法,使晶片可以快速升温然后立即冷却。

RTP的另一重要应用是形成金属硅化物。在这项工艺中,金属薄膜通过与源极、漏极和栅极区域的硅反应,形成金属硅化物。在先进的逻辑工艺中,常用金属为Co,目前正在为65nm工艺开发Ni。金属硅化物生成工艺通常在500℃以下进行,晶片必须放置在有高纯度气体保护的环境中加热,因为金属薄膜对氧化反应很敏感。对于该工艺来说,RTP系统是非常理想的。因为RTP的反应器体积较小,很容易通入高纯度气体进行净化,形成非常洁净的反应环境。

RTP在氧化反应中的作用也逐渐变得重要起来。由于RTP可以使用多种气体在高温下进行快速热处理,因此可以精确控制工艺条件,生成性能优异的氧化膜。RTP生成的氧化膜通常用于栅极介电材料、氧化膜和浅沟道隔离(STI)垫层。在气体中通蒸汽为RTP开创了新的应用领域。例如,使用富含H2的蒸汽对含W的栅极叠层结构进行选择性的氧化,这一应用已引起先进DRAM技术的特别关注。

这个问题我觉得吧,一方面通过工艺制成的改进,recipe的优化。另一方面,是靠TD或者PIE去改进整个制成的流程,及工艺选择。

过程控制,可以在生成过程中监控产品的质量,有利于及时发现问题,最大程度的降低生产的成本,不然等到一批wafer全部跑完才发现问题,损失肯定比在过程中发现来的严重。因为在生产过程中若发现问题还是机会去rework的,不过还是有可能会报废。

在fab厂里主要通过offline来monitor 机台及工艺的状况,以便及时调整工艺参数等。

这只是我个人一点理解,希望对你有帮助。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9070213.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存