利用掺杂硅与单晶硅的熔点差异来提纯的。
简单说一块粗硅圆柱体置于惰性气体环境中,中间套一个加热环,加热到硅的熔点附近,加热环从硅圆柱体一段开始,含杂质的硅熔点较低,呈熔融状态,然后加热环缓慢的向另一端移动,这时候杂质会随着加热环的移动向一段移动,后面的硅重新结晶得到单晶硅。
最后杂质集中到硅棒一段,整个硅棒就提纯了。反复多次进行,就可得到极高纯度的单晶硅。
旋转提拉的过程中,在固液界面上杂质在两相中重新分配,绝大多数都留在了液相里,于是上面就形成了高纯度的单晶硅硅锭。这样就从99.99%的硅制得99.99999999(好多9)%的硅单质。
目前国际上能生产电子级高纯硅的国家不多,欧美和日本相对比较发达。在我国研制并生产电子级高纯硅的有陕西黄河水电和江苏鑫华半导体。
工业角度中因为生产体量大,在保证其品质的基础上有成本与盈利方面的压力,所以对工艺流程要求的更严苛。具体的技术细节一般为各公司核心机密,是受到严格管控的。
你好,很高兴为你解答:1, 半导体材料由于硅半导体耐高电压、耐高温、晶带宽度大,比其它半导体材料有体积小、效率高、寿命长、可靠性强等优点,因此被广泛用于电子工业集成电路的生产中。高纯的单晶硅是重要的半导体材料。在单晶硅中掺入微量的第IIIA族元素,形成P型硅半导体另外广泛应用的二极管、三极管、晶闸管和各种集成电路(包括我们计算机内的芯片和CPU)都是用硅做的原材料。2, 太阳能光伏电池板 多晶硅可以直接用于制造太阳能光伏电池板,或加工成单晶硅后再用于制造光伏电池板。先将硅料铸锭、切片或直接用单晶硅棒切片,再通过在硅片上掺杂和扩散形成PN结,然后采用丝网印刷法,将银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面上涂减反射膜等一系列工艺加工成太阳能电池单体片,最后按需要组装成太阳能电池板。目前,硅光伏电池占世界光伏电池总产量的98% 以上,其中多晶硅电池约占55% ,单晶硅电池约占36% ,其它硅材料电池约占70%。由于多晶硅光伏电池的制造成本较低,光电转换效率较高(接近20%),因而得到快速发展。[4]3, 集成电路这是将成千上万个分立的晶体体管、电阻、电容等元件,采用掩蔽、光刻、扩散等工艺,把它们集成一个或几个尺寸很小的晶片上,集结成一个以几个完够的电路。集成电路大大减小了体积、重量、引出线和焊点数目,并提高了电路性能和可靠性,同时降低了成本,便于批量生产,使计算机工业飞速发展。4, 探测器由对光照敏感的PN结或PIN结构成的光生伏打型的探测器。PIN结不是突变的PN结,而是在结的P和N侧之间加入本征区I层。该结构的光照表面(如P)区做得较薄,使入射光进入本征区而被吸收,产生空穴-电子对。本征区的强电场使载流子快速飘移,通过本征区。因此,PIN结相同材料的PN结构相比,其响应时间更短。5,传感器硅的传感器有压阻传感器,它是将压力转化为电信号。硅片受外力作用时晶格形变,使得电阻率改变。热敏电阻,利用硅的负温度系数效应,当温度升高时,载流子浓度增加,使得电阻率下降。硅还可用于光敏传感器和磁敏传感器等。晶体硅材料是最主要的光伏材料,性质为带有金属光泽的灰黑色固体、熔点高、硬度大、有脆性、常温下化学性质不活泼。其市场占有率在 90%以上,而且在今后相当长的一段时期也依然是太阳能电池的主流材料。高纯硅的制备:
1、硅按不同的纯度可以分为冶金级硅(MG)、太阳能级硅(SG)和电子级硅(EG)。一般来说,经过浮选和磁选后的硅石(主要成分是SiO2)放在电弧炉里和焦炭生成冶金级硅,
2、然后进一步提纯到更高级数的硅。目前处于世界主流的传统提纯工艺主要有两种:改良西门子法和硅烷法,它们统治了世界上绝大部分的多晶硅生产线,是多晶硅生产规模化的重要级数。
3、在此主要介绍改良西门子法,改良西门子法是以HCl(或H2,Cl2)和冶金级工业硅为原料,在高温下合成为SiHCl3,然后通过精馏工艺,提纯得到高纯SiHCl3,最后用超高纯的氢气对SiHCl3进行还原,得到高纯多晶硅棒。
高纯硅的应用领域:
1、高纯的单晶硅是重要的半导体材料。在单晶硅中掺入微量的第IIIA族元素,形成p型硅半导体;掺入微量的第VA族元素,形成n型半导体。p型半导体和n型半导体结合在一起形成p-n结,就可做成太阳能电池,将辐射能转变为电能,在开发能源方面是一种很有前途的材料。
2、金属陶瓷、宇宙航行的重要材料。将陶瓷和金属混合烧结,制成金属陶瓷复合材料,它耐高温,富韧性,可以切割,既继承了金属和陶瓷的各自的优点,又弥补了两者的先天缺陷。可应用于军事武器的制造。
3、光导纤维通信,最新的现代通信手段。用纯二氧化硅可以拉制出高透明度的玻璃纤维。激光可在玻璃纤维的通路里,发生无数次全反射而向前传输,代替了笨重的电缆。光纤通信容量高,一根头发丝那么细的玻璃纤维,可以同时传输256路电话。
以上内容参考 百度百科-硅
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)