半导体封装工艺中,小孔的原因及解决方法有哪些?

半导体封装工艺中,小孔的原因及解决方法有哪些?,第1张

半导体封装工艺中,如果是封装胶体中形成的小孔有至少三个原因:1. 材料不良。2. 设备不良 3. *** 作不良。

解决方法有三个: 1. 加严材料入检 2. 加强监控设备状态 3.严格要求制程数位指导和 *** 作训练。

木材制品的切削加工主要在各种木工机床上进行,其方法主要有:锯切、刨切、车削、铣削、钻削和砂光等。

木材的锯切通常采用木工圆锯机或木工带锯机(见木工锯机)。两者都可用不同锯齿形状的刀具(锯片或锯带)进行截料、剖料或切榫。带锯切的锯缝较窄,窄带锯切还能切割曲面和不规则的形状。

刨削通常用木工平刨床或木工压刨床(见木工刨床)。两者都可用旋转的刨刀刨削平面或型面,其中压刨床加工可得到较高的尺寸精度。当表面的光洁程度要求较高时可用木工精光刨。

木料的外圆一般在木工车床上车削。

木料的开榫、开槽、刻模和各种型面的加工,可用成形铣刀在木工铣床上铣削。

钻孔可用木工钻头、麻花钻头或扁钻,在台钻或木工钻床上进行。小孔也可用手电钻加工。

木料表面的精整可用木工砂光机。平面砂光可用带式砂光机;各种型面的砂光可用滚筒式砂光机;端面砂光和边角倒棱可用盘式砂光机。也可用木工车床或木工钻床砂光。

木料加工的切削速度比金属切削高得多,所以刀具的刃口都较薄而锋利,进给量也较大。如锯切速度常达40~60米/秒车削或刨削时,刀具前角常达30°~35°,切削速度达60~100米/秒,故出屑量很大。切削时一般不用切削液,干切下来的大量木屑可用抽风机吸走。高速旋转的木工机床一般都设有机动进给和安全防护装置,但不少木材的切削加工仍需用手动进给,因此必须特别注意 *** 作安全。 塑料的刚度比金属差,易弯曲变形,尤其是热塑性塑料导热性差,易升温软化。故切削塑料时,宜用高速钢或硬质合金刀具,选用小的进给量(0.1~0.5 毫米/转)和高的切削速度,并用压缩空气冷却。若刀具锋利,角度合适(一般前角为10°~30°,后角为5°~15°),可产生带状切屑,易于带走热量。若短屑和粉尘太多则会使刀具变钝并污染机床,这时需要对机床上外露的零件和导轨进行保护。切削赛璐珞时,容易着火,必须用水冷却。

车削酚醛塑料、氨基塑料和胶布板等热固性塑料时,宜用硬质合金刀具,切削速度宜用 80~150米/分;车削聚氯乙烯或尼龙、电木等热塑性塑料时,切削速度可达200~600米/分。

铣削塑料时,采用高速钢刀具,切削速度一般为35~100米/分;采用硬质合金刀具,切削速度可提高2~3倍。

塑料钻孔可用螺旋角较大的麻花钻头,孔径大于30毫米时,可用套料钻。采用高速钢钻头时,常用切削速度为40~80米/分。由于塑料有膨缩性,钻孔时所用钻头直径应比要求的孔径加大0.05~0.1毫米。钻孔时,塑料下面要垫硬木板,以阻止钻头出口处孔壁周围的塑料碎落。

刨削和插削的切削速度低,一般不宜用于切削塑料,但也可用木工刨床进行整平和倒棱等工作。攻丝时可采用沟槽较宽的高速钢丝锥,并用油润滑外螺纹可用螺纹梳刀切削。对尼龙、电木和胶木等热固性塑料,可以用组织疏松的白刚玉或碳化硅砂轮磨削,也可用砂布(纸)砂光,但需用水冷却。由于热塑性塑料的磨屑容易堵塞砂轮,一般不宜磨削。 车削硬橡胶工件时,可用刃口锋利的硬质合金车刀(前角为12°~40°,后角为10°~20°),采用150~400米/分的切削速度,可以干车,也可用水或压缩空气冷却。如用高速钢刀具车削,切削速度要低些。

硬橡胶钻孔可用顶角为80°左右的硬质合金或高速钢麻花钻头干钻。当钻削孔径为10~20毫米时,切削速度可取21~24米/分。硬橡胶工件也可用松而软的砂轮磨削。 玻璃(包括锗、硅等半导体材料)的硬度高而脆性大。对玻璃的切削加工常用切割、钻孔、研磨和抛光等方法。

对厚度在 3毫米以下的玻璃板,最简单的切割方法是:用金刚石或其他坚硬物质在玻璃表面手工刻划,利用刻痕处的应力集中,即可用手折断。

玻璃的机械切割一般采用薄铁板(或不锈钢薄片)制成的圆锯片,并在切削过程中加磨料和水。常用的磨料是粒度为 400号左右的碳化硅或金刚石。当需要把圆棒形的半导体锭料切割成 0.4毫米左右厚度的晶片时,有采用环形圆锯片,利用其内圆周对棒状锭料进行切割的,切割0.4毫米厚度的晶片,切缝宽约为0.1~0.2毫米。方形晶片平面的切割常采用薄片砂轮直接划出划痕后折断,圆形晶片也可采用超声波切割。

研磨和抛光玻璃的工作原理与金属的相似。研磨后的玻璃表面是半透明的细毛面,必须经过抛光后才能成为透明的光泽表面。研磨压力一般取1000~3000帕,磨料可用粒度为W5~20号的石英砂、刚玉、碳化硅或碳化硼,水与磨料之比约为 1:2。玻璃研磨后,平整的毛面常留有平均深度为4~5微米的凹凸层,且有个别裂纹深入表里,故抛光时常需去除厚达20微米玻璃层,这个厚度约为研磨去除量的1/10左右,但抛光所需的时间远比研磨长(数小时到数十小时)。抛光盘的材料通常采用毛毡、呢绒或塑料,所用磨料是粒度W5号以下的氧化铁(红粉)、氧化铈和氧化锆等微粉(直径 5微米以下)。研磨时加等量的水制成悬浮液作为抛光剂,在 5~20℃的环境温度下工作效果较好。

在玻璃上钻削大孔或中孔时,一般用端部开槽的铜管或钢管作为钻头,在30米/分的切削速度下进行,同时在钻削部位注入碳化硅或金刚石磨料和润滑油。钻孔时,玻璃必须用毛毡或橡胶垫平,以防压碎。对孔径5毫米以下的小孔常采用冲击钻孔法,即用硬质合金圆凿以2000转/分左右的转速,同时通过电磁振荡器使圆凿给玻璃表面以6千赫的振动冲击,这种方法的效率很高,只要10秒钟就可钻出孔径2毫米、深5毫米的小孔。对方孔和异形孔采用超声波(18~24千赫)加工最为方便。

玻璃的外圆加工一般用碳化硅砂轮磨削,也可用金刚石车刀或负前角的硬质合金车刀在2000转/分左右的转速下进行车削。 对大理石、花岗石和混凝土等坚硬材料的加工主要用切割、车削、钻孔、刨削、研磨和抛光等方法。切割时可用圆锯片加磨料和水;外圆和端面可采用负前角的硬质合金车刀以10~30米/分的切削速度车削。钻孔可用硬质合金钻头,切削速度为4~7米/分。大的石料平面可用硬质合金刨刀或滚切刨刀刨削;精密平滑的表面可用三块互为基准对研的方法或磨削和抛光的方法获得。

激光是近代科学技术中的重大发明之一。随着半导体激光二极管技术的重大突破,固体激光器得到强劲的发展,其应用领域不断地扩展。其中最为重要的是用半导体激光器和半导体列阵激光器泵浦固体激光器技术的发展,这是一种高效率、长寿命、光束质量高、稳定性好、结构紧凑小型化的第二代新型固体激光器,目前在空间通讯,光纤通信,大气研究,环境科学,医疗器械,光学图象处理,激光打印机等高科技领域有着独具特色的应用前景。

激光二极管泵浦固体激光器(Diode Pumped Solid state Laser-DPSSL)的种类很多,可以是连续的、脉冲的、调Q的,以及加倍频混频等非线性转换的。工作物质的形状有圆柱和板条状的。而泵浦的耦合方式可分为端面泵浦和侧面泵浦,其中端面泵浦又可分为直接端面泵浦和光纤耦合端面泵浦两种结构。

相对于侧面泵浦方式,端面泵浦的效率较高。这是因为,在泵浦激光模式不太差的情况下,泵浦光都能由会聚光学系统耦合到工作物质中,耦合损失较少;另一方面,泵浦光也有一定的模式,而产生的振荡光的模式与泵浦光模式有密切关系,匹配的效果好,因此,工作物质对泵浦光的利用率也相对高一些。

正是由于端面泵浦方式效率高、模式匹配好、波长匹配的优点近年来在国际上发展极为迅速,已成为激光学科的重点发展方向之一。它在激光打标、激光微加工、激光印刷、激光显示技术、激光医学和科研等领域都有广泛的用途,具有很大的市场潜力。

2.端面泵浦固体激光器的泵浦耦合方式

2.1 直接端面泵浦

如图 1 所示的直接端面泵浦的结构示意图。它包括三个部分: 激光二极管泵浦源(由激光二极管阵列、驱动源和致冷器组成) ,光学耦合系统和激光棒和谐振腔。泵浦所用的激光二极管阵列出射的泵浦光,经由会聚光学系统将泵浦光耦合到晶体棒上,在晶体棒左端面镀有多层介质膜,对泵浦光的相应波长为高透、而对产生的激光束的相应波长为高反,腔的输出镜为镀有多层介质膜的凹面镜。

直接端面泵浦

然而,直接端面泵浦的激光器虽然结构型式紧凑,转换效率高,基模光强分布较好,但固体激光的输出功率受端面限制,因为端面较小时只能采用单元的激光二极管,最多只能相对两只激光二极管泵浦。这就限制了泵浦光的最大功率。如果采用功率较大的激光二极管阵列作泵浦源,则由于阵列型二极管输出的泵浦光模式不好,因而不易将泵浦光有效地耦合到工作物质中,实际上降低了效率。另一方面由于泵浦光的模式较为复杂,泵浦后输出的激光光束质量也不易保证。而且这种结构散热效果差,故一般只适合低功率激光器情况工作。

2.2 光纤耦合端面泵浦

针对直接端面泵浦方式的弱点,人们又进一步发展了光纤耦合的端面泵浦。端面泵浦激光器由激光二极管、两个聚焦系统、耦合光纤、工作物质和输出反射镜组成,如图 2 所示。与直接端面泵浦不同,这种结构首先把激光二极管发射的光束质量很差的激光耦合到光纤中,经过一段光纤传输后,从光纤中出射的光束变成发散角较小的、圆对称的、中间部分光强最大的泵浦光束。用这一输出的泵浦光去泵浦工作物质,由于它和振荡激光在空间上匹配得很好,因此泵浦效率很高。由于激光二极管或二极管阵列与光纤间的耦合较与工作物质的耦合容易,从而降低了对器件调整的要求。而且最重要的是这种耦合方式能使固体激光器输出模式好、效率高的激光束。

图2 光纤耦合端面泵浦

3.高功率端面泵浦固体激光器

3.1 高功率端面泵浦固体激光器存在的问题

在高功率端面泵浦固体激光器中,激光晶体吸收泵浦光而产生的热效应,对于激光器的稳定性、输出功率及效率、光束质量等有着直接影响,这使得端面泵浦设计存在高功率扩展问题。

但是热效应所产生的直接后果--热透镜效应和退偏,在很大程度上可通过优化腔设计加以消除。近年来就发展了很多用于提高输出功率的技术,如两路耦合,高功率泵浦源,多个泵浦源光纤捆匝,多个增益介质的多端面泵浦等等。这些技术相结合促进了端面泵浦固体激光器的发展。

3.2 几种高功率端面泵浦固体激光器的介绍

3.2.1 目前国内的高功率端面泵浦固体激光器

双端泵浦双 Nd∶YVO4 激光器:

在适于激光二极管泵浦的众多激光晶体中, Nd∶YVO4 晶体因在 1064nm 处的受激发射截面大,在 808nm处的吸收系数高,以及吸收谱线宽等参数均优于其它现有的晶体材料,而倍受人们的关注[1]。

为了提高固体激光器的输出功率可以利用多个激光晶体串接的方式。多棒串接实际上是光束相干合成的一种技术方案,其优点是输出功率可与棒数成比例的增加[2], 获得更大的模体积[3,4]和高的光-光转换效率。研究也同时表明,采用平行平面腔结构,整个系统可以得到与棒数成比例的激光输出,且不会降低光束质量,将两根或多根 Nd:YAG 晶体串接起来使用,增加了工作物质的长度,获得了更大的模体积,从而得到了高功率的输出[5]。

双Nd∶YVO4 晶体激光器,将晶体的端面镀膜作为谐振腔的端面镜,构成了平行平面谐振腔。对平行平面谐振腔等效腔进行理论分析后得出激光晶体吸收泵浦光产生的热透镜效应对保持腔的稳定性起到了重要的作用,使得等效腔迅速达到其几何的稳定腔[6],在发展输出功率为数百瓦至数千瓦量级的高功率固体激光器中,常采用多棒串接的技术方案。

在国内首次进行了双端泵浦双 Nd∶YVO4 激光器的实验研究,在抽运功率为 20.74W 时获得了 11W 的 1064nm TEM00 模激光输出,其光-光转化效率约为 53% 。图 3 为双端泵浦双棒串接 Nd∶YVO4 实验装置图[7]。

图3 双端泵浦双 Nd∶YVO4 激光器

二极管端面泵浦混合腔Nd:YVO4 板条激光器:

近年来关于端面泵浦固体激光器的研究热点之一,是如何有效地对激光晶体进行冷却,降低热效应的影响,从而在得到高功率的激光输出的同时,又保证好的光束质量。在众多的研究工作中,采用了板条或者薄片状的激光晶体,由于对其进行大面积的冷却的方法,取得了令人瞩目的成就。

新型的混合腔板条激光器不但具备板条激光器高效冷却的优点,更具有传统板条激光器所不具备的优势。它利用薄的片状晶体(1mm)来做激光器的增益介质,片状晶体的两个表面都被紧贴在热沉上,结合混合腔,使其输出光束的远场近似为高斯分布,具备很好的光束质量[8]。

目前采用这种新型的板条激光器结构,在国内实现了此类激光器的连续运转,得到了波长为

1064nm 稳定的连续激光输出,当泵浦功率为 60.5W 时,输出功率达到 16.2W 。

该激光器的装置原理图如图 4 所示[9]。

板条激光器谐振腔由一个凹面镜和一个柱面镜组成,其中凹面镜为后腔镜,曲率半径 250mm ,镀有 808nm 的增透膜和 1064nm 的全反膜;柱面镜为前腔镜,并耦合输出激光,曲率半径 150mm ,镀有 1064nm的全反膜,两腔镜如图 4b 所示,放于共焦位置,腔长为 50mm 。[9]

3.2.2 近年来国外的高功率端面泵浦固体激光器

端面泵浦高功率运转固体激光器:

图5 所示的美国加州大学端面泵浦高功率运转固体激光器[10]是美国加州大学和美国Lawrence Livermore国家实验室合作,在1999年,进一步提高光束质量之后,采用 LD 端泵Yb:YAG棒获得 200W 连续波和重复频率 5kHz、195W 调 Q 输出,在光束质量 M2=2.4 时获得183W 调 Q 输出。同时增加了谐振腔设计的灵活性,运用腔内双折射补偿得到偏振光输出,提高了效率,得到光束质量 M2=3.2的112W连续波偏振光输出。[11]

图5 美国加州大学端面泵浦高功率运转固体激光器

二极管列阵端面泵浦Yb:TAG固体激光器:

图6 二极管列阵端面泵浦 Yb:TAG 的实验装置图

图 6 是 LLNL 实验室用二极管列阵端面泵浦 Yb:TAG 的示意图[12]。实验中的泵浦源是由36个带微柱透镜的LD bars构成,每个bar的长度为15mm,采用硅基质的微沟道制冷。泵浦模块分为上下两部分,激光由中间的一个直径为6mm的圆孔通过。半导体列阵发出的泵浦光通过一个耦合透镜,进入晶体。耦合透镜是由熔融石英制成的柱面透镜与中间掏空的锲形铝光传导管组成。在石英透镜的中间开有一个小孔,允许激光顺利通过。铝管内表面呈四棱台状,且镀有薄薄的一层银用来反射泵浦光。该耦合透镜可以将两束 50×15mm2 的泵浦光会聚成 4.6×2.6mm2 的长形光斑,压缩比为63。为了减少装置设计带来的损耗,该实验中的晶体为复合棒结构,即在晶体棒的两端有两个长为 15mm 端帽,端帽中没有掺杂激活离子,端帽的一端为与泵浦光的形状相匹配的矩形,一端为与晶体棒相粘接的圆形。此外,晶体四周被抛光,且晶体棒中心处的直径为2mm ,长为50mm,由中心向两端,直径逐渐增加,与两个端帽衔接处的直径为2.2mm。此设计可以有效地减少由于抛光所引起的放大的自发辐射损耗以及寄生振荡损耗。当采用了可以进行热致双折射补偿的双棒泵浦腔结构之后,便获得了1080W 的基频输出,光光效率为27.5% ,电光效率为 12.3%。

4.国内外高功率端面泵浦固体激光器的应用

在应用上,端面泵浦固体激光器以材料加工为主,包括了常规的激光加工:主要是材料加工,如激光标记、激光焊接、激光切割和打孔等。结构紧凑、性能良好、工作可靠的端面泵浦固体激光打标机产品系列已经在国内得到了规模应用,激光微加工、激光精密加工也都有广泛推广的趋势。在国外,千瓦级的二极管端面泵浦固体激光器已有产品,目前主要受限于成本和市场需求的限制。

除材料加工外,大功率二极管端面泵浦固体激光器还可以用于激光核聚变、科学研究、医疗、检测、分析、通讯、投影显示以及军事国防等领域,因而具有极其重要的应用价值。

5.结束语

我国在低功率端面泵浦固体激光器(<200mw)技术比较成熟,产业化(光通讯应用较多)也蓬勃发展。但是目前国外端面泵浦固体激光器市场化水平已经达到数百瓦,实验室水平已经达到千瓦级。而国内的大功率端面泵浦固体激光器发展一直具有局限性,应该积极进行这方面的研究,如果能实现产业化的发展,则必将带来巨大的经济效益和社会效益。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9094280.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存