据说世界上最难的两件事,一件是把自己的思想装进别人的脑袋,一件是把别人的钱装进自己的口袋。这两件事,毫米波雷达做到了:让坚持纯视觉方案的特斯拉花钱再度把它“请”上了车。
预计搭载4D毫米波雷达的特斯拉谍照
想必不少朋友已经知道这件事儿了,特斯拉即将推出的HW 4.0智驾方案预计包括一个4D毫米波雷达,消息一出连带着各大相关企业股票狂涨。让股市震荡,让马斯克“真香”,4D毫米波雷达到底有啥本事?
毫米波雷达
回答这个问题之前我们得先认识车载毫米波雷达。
车载毫米波雷达工作模型图
如果用一句话形容车载毫米波雷达有多牛,我只能说,它开启了智能辅助驾驶时代——1999年奔驰S级车型首次应用了基于毫米波雷达实现的自适应巡航功能,这套系统被命名为Distronic(限距控制系统)。
搭载Distronic系统的奔驰S级
即使我们看到现在车企们更愿意以激光雷达为门面去宣传自家的智能辅助驾驶能力,但事实上,毫米波雷达的特质是激光雷达无法替代的。
毫米波雷达是工作在毫米波波段探测的雷达,一般毫米波的波长为1-10mm,频率在30-300GHz,通过发射和接收电磁波的信号后利用多普勒效应来计算目标物的各个参数(如测距、测速、测角)。
多普勒效应
不同长度的波在大气中传递时被阻碍和吸收的程度不同,而毫米波的波长介于微波和红外波之间,所以它有着两者的优势,与微波相比,毫米波的指向性好、分辨率高、抗干扰能力强,探测性能也更好。
与红外波相比,毫米波在大气中传播时的衰减小、能更好穿透烟雾灰尘、受天气影响小。这些特质决定了毫米波雷达具有全天时全天候(除暴雨)的工作能力。
由于雷达涉及军用,所以国家开放给民用的频段是有管制的,目前世界上主流的车载毫米波雷达频率为24GHz(也被视为毫米波频率)、77GHz、79GHz,也有少数国家如日本开放60GHz频率。
国内开放给车载毫米波雷达的频率就是24GHz和77GHz,所以目前国内的车载毫米波雷达分为24GHz和77GHz毫米波雷达。
海拉24GHz毫米波雷达
就像不同分贝的声音能传到不同的距离,不同频率的毫米波雷达能探测的距离也不同。24GHz的探测距离通常在30-120m,77GHz的探测距离通常在200m及以上。
射频
看到这里可能有物理比较好的朋友要质疑我了:根据波的传播理论,频率越高,分辨率越高,穿透能力越强,但传输时损耗也越大,传输距离越短;相对地,频率越低,波长越长,绕射能力越强,传输距离越远。
那我为什么说77GHz毫米波雷达比24GHz毫米波雷达的探测距离更远呢?这和毫米波雷达的结构和工艺有关。
毫米波雷达的硬件占比约为50%,主要由射频前端(MMIC)、数字信号处理器、天线、控制电路等部分构成,另外50%则由软件算法构成。
打造毫米波雷达的过程中
雷达天线的尺寸和波长成正比,24GHz雷达波长较长,所以天线的体积更大,而77GHz雷达天线比较小(大小大概为24GHz雷达天线的1/3),同样的体积可以布置更多的天线单元。
一般24GH毫米波雷达的天线只能做到1发2收,77GHz毫米波雷达却能做到4发4收,整体天线阵的增益是使77GHz毫米波雷达探测距离更远的一个原因。
另外24GHz的毫米波绕射能力更强,就像《画画接龙》这个游戏一样,传到最后已经出现了严重的信息偏差,也就近距离的探测信息比较靠谱。
两者在分辨力上也有区别:77GHz毫米波雷达的分辨距离最小为3.75cm,而24GHz毫米波雷达则为60cm。
一颗国产77GHz毫米波雷达
这意味着当两个目标物体之间的距离为60cm时,只有77GHz毫米波雷达能成功分辨,24GHz毫米波雷达则会视为只有一个目标物体。
虽然看似只是频率不同,但实际上两者的性能有很大差异,因此它们的使用场景也有所不同。现在业内常见的毫米波雷达搭配方式是1个前向+4个侧向(左前、左后,右前、右后),整理如下:
目前主流毫米波雷达的功能有测角、测距、测速,也就是测量目标物体的方位,与目标物体的距离和目标物体的速度,我们称之为3D毫米波雷达。不过它有一个巨大缺陷,就是无法识别静止物体。
由于缺乏高度信息,对于3D毫米波雷达来说,不会产生速度信息的地面减速带或其他静止障碍物和上方的天桥没有什么区别。
如果测到天桥也立马牵动刹车那也太离谱了,所以3D毫米波雷达的算法直接忽略这些静止物信息,就算前面放一块陨石,3D毫米波雷达都不会触发刹车。
这可能是2020年一辆特斯拉直接撞上前方静止车的原因,毫米波雷达选择闭眼冲,而当年特斯拉的视觉方案也没有现在这么精良。
辅助驾驶模式下即将撞上货车的特斯拉
这个缺陷让毫米波雷达在需求越来越高的智驾市场陷入了僵局,直到2020年第一颗4D毫米波雷达的诞生。
4D毫米波雷达VS激光雷达
基于3D毫米波雷达的基础,4D毫米波雷达增加了高度信息,带来的直接影响就是4D毫米波雷达可以成像。
当波射到物体表面时,所反射回的波会携带方位、距离等信息,经过坐标转换则呈现为点云数据,两种毫米波雷达经软件算法换算出的图像如下:
比如一个80 cm体宽1.7m身高的人在快速奔跑,3D毫米波雷达就会识别为一道由点组成的横向80 cm虚线在某距离以某速度向某方向移动,而4D毫米波雷达会识别为由点组成的80 cm体宽1.7m高人形在某距离以某速度向某方向移动。
当前方出现了一道长2m并离地3m的限高杆,同时下方有一条等长的减速带,3D毫米波雷达就会识别为两条几乎重叠的由点组成的长2m虚线,而4D毫米波雷达则会识别出两条长2m的虚线中间的无障碍距离为3m。
4D毫米波雷达不再有无法识别静止物的缺陷,加上价格只有激光雷达10%-20%的优势以及本身毫米波雷达探测距离远、抗干扰能力强、雨雾无阻的特质,4D毫米波雷达被视为激光雷达的强劲对手。
一颗激光雷达
用4D毫米波雷达替代激光雷达,可行吗?就目前来说,答案是否定的。
4D毫米波雷达和激光雷达的本质都是通过波信号来主动探测,4D毫米波雷达的波长在3.9mm,而激光雷达的波长通常为905或1550nm,由于波的传播特质,激光雷达在面对雨、雾、沙尘暴等天气几乎束手无策,而毫米波雷达则能发挥性能。
虽然它俩都能成像,但是激光雷达有个碾压4D毫米波雷达的优势,就是分辨率。市面上的4D毫米波雷达每秒大概可以生成10万个点云,而128线激光雷达可以实现每秒140万点云的生成。
激光雷达成像效果
用140万个点描摹出的画像自然比用10万个点描摹出的画像,精确度要高得多。不仅是画像轮廓的清晰程度不同,更直接的影响就是角分辨率的差距。
激光雷达的角分辨率做到了0.1°,而4D毫米波雷达可以做到1°,也就是说当2个目标物体间的角度角度差距为1°时,只有激光雷达可以分辨得出。
说到底,在成像方面,激光雷达有着4D毫米波雷达无法匹敌的分辨率。目前的4D毫米波雷达更加适合做视觉算法的补充,在雨雪天气时为摄像头助一把力。
这样看来,4D毫米波雷达比激光雷达更适合特斯拉。
除了成本方面,激光雷达的成像优势对于特斯拉的视觉方案是重复的,摄像头和激光雷达的共同缺点就是受限于可见度低的天气,而这个问题只有毫米波雷达能为特斯拉解决。
毫米波雷达历史
回到开头的问题,也许很多朋友会选择中国,毕竟咱们现在的智驾市场如火如荼,但实际答案是德国。
1904年,德国人斯琴·赫尔斯麦耶,基于前人电磁理论和电磁波实验的基础上,利用无线电波回升探测装置,研制出了原始的船用防撞雷达,这就是世界上第一颗雷达。
1935年英国人罗伯特·沃特森·瓦特成功研制出一台实用雷达系统,并被英国空军大规模部署,而这个系统通过提前检测到德军飞机,协助英国抵御住了纳粹德国的攻击,获得了“不列颠空战”的胜利。
罗伯特·沃特森·瓦特
德国人发明的雷达被英国人用来打败了德国?据说德国人十分不服,回去苦心研究,再后来汽车产业的繁荣以及1986年欧洲制定的“欧洲高效安全交通系统计划”催化了车载雷达的蓬勃发展。
2012年,德国半导体巨头英飞凌推出24GHz单片雷达解决方案,降低了毫米波雷达的技术门槛和制造成本,推动毫米波雷达在各领域的应用。
国内研究毫米波雷达的时间并不长,2013年24GHz毫米波雷达产品才进入中国,同时国外对国内开启了77GHz毫米波雷达的技术封锁。
2014-2016年国内的毫米波初创企业成立,其中首家研究毫米波雷达的就是上汽集团旗下的华域汽车。2016-2017年,国产24GHz毫米波雷达开始量产,77GHz毫米波雷达开始出现样品。
华域汽车办公点
虽然目前全球毫米波雷达市场仍被博世、大陆、海拉等海外龙头厂商占据主要份额,但是国内的行业发展也处于欣欣向荣的状态,国产77GHz毫米波雷达早已面世,例如德赛西威、森斯泰克、楚航科技等国内领先的企业都具备量产能力。
大陆集团logo
最后我想片面的浅聊一聊,为什么国外掌握着更好的智能辅助驾驶核心传感器技术,而国内却成为了智能辅助驾驶的核心战场。
2018年的时候德国制造商大陆集团就对自动驾驶汽车接受程度进行调查。中国受访人中,高达 89% 的人表示支持自动驾驶技术,相比之下,德国和美国的受访者对自动驾驶支持的比例分别只有 53% 和 50%。
英国的德勤咨询公司也做过一次调查,截至2019年,中国对自动驾驶汽车感到“危险”的消费者比例为25%,是亚洲6个调查国家和地区中最低的。
2022年北京日报做了个关于中国人对自动驾驶的接受程度的调查,结果显示,超八成中国人接受自动驾驶,比例远高于其他国家。
聊这个并不是为了让大家忽略目前智能辅助驾驶技术的不成熟,相反,我们需要更加实际的去接受现有智能辅助驾驶技术的局限。但是这些数据表明,我们对科技有着更包容、积极的态度,即使起步晚了一点也没关系。
【本文来自易车号作者AutoLab,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
硅片是生产芯片、分立器件、传感器等半导体产品的关键材料,目前90%以上的半导体产品均使用硅基材料制造,硅片占半导体材料市场规模比重约为37%,位居半导体三大核心材料之首,因此,半导体硅片被誉为半导体行业的“粮食”,虽然全球市场总规模不大,但至关重要。近20年以来,半导体硅片长期被日本信越、日本胜高(SUMCO)、环球晶圆、德国Siltronic、韩国SK Siltron等少数寡头企业垄断。2019年,行业前五大企业合计销售额占全球半导体硅片行业销售额比重高达92%,我国90%以上的硅片需求依赖进口,基本不在国内生产,目前,硅片垄断局面还在加剧。
11月30日,德国硅片制造商Siltronic AG表示,正与环球晶圆开展深入谈判,后者拟以37.5亿欧元(约合45亿美元)将其收购,双方预期在12月第二周,取得Siltronic监事会及环球晶圆董事会核准后,进行BCA签署。
环球晶董事长徐秀兰指出,双方都认为结合后的事业体会有很好的成效,将更能互补地有效投资,进而扩充产能。
并购前,德国Siltronic为全球第四大硅晶圆厂,市占率约为7%,环球晶则为全球第三大厂,市占率达18%,收购完成后,环球晶在全球硅晶圆市场占有率有望一举跃升至25%,逼近日本胜高的28%,同时意味着全球晶圆市场将呈现日本信越、胜高、环球晶圆、SK Siltron四强争霸的格局,进一步垄断市场。
根据IC Insights的报告,今年仅ADI收购Maxim、英伟达收购ARM、SK海力士收购英特尔存储业务、AMD收购赛灵思四起收购案的交易额就高达1050亿美元,外加Marvell100亿美元收购Inphi、环球晶45亿美元收购德国Siltronic,2020年半导体并购金额已经创下 历史 新高。
去年,韩国SK Siltron为防止日本出口限制,收购杜邦碳化硅晶圆事业部,在区域全球化抬头的当下,各巨头抱团取暖,通过并购来加强各自的优势,以应对快速变化和复杂的局面。
以半导体设备巨头应用材料为例,在2018年之前的几十年内,应用材料长期稳坐全球半导体设备第一供应商的位置,凭借的就是全面且强大的产品线,特别是在具有高技术含量的半导体制造前道设备,该公司具有相当深厚的技术功底。
但从 历史 来看,应用材料正是通过一系列的并购,来加强自己实力的,虽然从1967年-1996年的30年间,应用材料只有一次核心业务相关的并购,但在1997年-2007年十年间,先后发起了14起并购案,不断完善自己的产品构成。
截至目前,应用材料的产品线涵盖了半导体制造的数十种设备,包括原子沉积、化学气相沉积、物理气相沉积、离子注入机、刻蚀机、化学抛光及晶圆检测设备等,预计2020年,应用材料半导体设备的市场份额将从去年的15.9%提高至18.8%。
查阅了近几年的国内半导体海外并购案例,主要有五起:
2013年紫光集团17.8亿美元收购展讯,2014年9.07亿美元收购锐迪科,后合并成为紫光展锐;2015年合肥瑞成18亿美元收购高性能射频功率放大器厂商AMPLEON;2016年中信资本、北京清芯华创投资与金石投资19亿美元收购CMOS传感器厂商豪威 科技 ;
2016年长电 科技 以7.8亿美元收购新加坡封测厂金科星朋;2017年建广资产27.5亿美元收购恩智浦标准件业务,今年6月安世半导体正式注入闻泰 科技 。
其他的海外收购基本都在5亿美元以下,特别是国产替代加速的最近三年,鲜有海外并购的大案例,想着国内半导体厂不差钱,但为何还是买不来?
实际上,国内企业海外并购,特别是半导体海外并购还真不是钱多就能解决的问题,早在1996年,西方42国就签署了集团性限制出口控制机制——《瓦森纳协定》,简单来说,就是成员国内技术转让或出口无需上报,但向非成员国转让需要上报,以此达到技术转让监管和控制的目的。
并且这份协定很与时俱进,以大硅片为例,2019年底修订的《瓦森纳协定》,就新增了一条关于12英寸大硅片技术的出口管制内容,直指中国集成电路14纳米制程工艺,以及上游适用于14纳米工艺的大硅片。
封锁的还不止拉高纯度单晶硅锭的设备和材料,更是从切割抛光好的硅片具体参数上进行了限制,专门针对适用于14纳米制程工艺的各种硅片。所以说,小到具体产品参数都能安排的明明白白,更别说直接并购先进企业,基本没有可能。
如果说美国单方面打压华为是凭借自身实力,那么通过《瓦森纳协定》限制技术出口,就相当于是在全球拉圈子,限制圈内技术出口,圈外想用,就只能用廉价劳动换取圈内输出的高附加值成品,《瓦森纳协定》相当于“金钟罩”。所以并购不来的公司,只有自己造。
实际上,光伏用硅片已经被国内的厂家玩出白菜价,半导体用的硅片之所以被国外垄断,难度在于单晶硅的纯度和内部缺陷的控制,我们做的不好。
在纯度上,光伏用的硅片6个9就够了,但半导体硅片需要11个9,也就是99.999999999%,问题就在这个纯度上面,拉出来的单晶硅锭纯度不够,内部缺陷、应力、翘曲度也跟国外有差距,做出来的芯片良品率就比较低。
所以为了良品率,晶圆厂都愿意愿意花高价买更高质量的硅片,而不愿意花低价买低质量的硅圆片,因为会导致最终芯片的良率,我国生产的硅圆片打不开国际市场就是凭证。
对于单晶硅的提纯和晶体缺陷控制,需要基于长期实践经验的积累和现场错误的总结,这是各个厂商的高度保密的技术,因为这方面的因素,国外硅片厂都没有在国内设厂。
目前,沪硅产业打破了我国12英寸(300mm)半导体硅片国产化率几乎为0的局面,推进了我国半导体关键材料生产技术自主可控的进程;中环股份现也已具备3-12英寸全尺寸半导体硅片产品的量产能力。
总的来说,当下全球市场主流的产品是12英寸,使用比例超过70%,主要应用在智能手机、计算机、人工智能、固态硬盘等高端芯片上。目前4-6英寸的硅片已可以满足国内需求,8英寸也日渐成熟,进入大规模国产替代阶段,但12英寸才刚刚进入初级阶段,还面临EPI、位错等诸多难题待解决,替代之路仍任重道远。
雷锋网消息,10 月 29 日下午,GlobalFoundries(雷锋网按:GlobalFoundries 简称 GF,是一家来自美国的芯片代工企业)和台积电宣布,两家公司已经终止了彼此间的专利纠纷,并且签署了交叉授权协议。这项交叉授权协议可适用于彼此在全球范围内现有的半导体专利,以及在未来十年中将要申请的专利。然而,在过去的两个月里,这两家公司相处得并不愉快;要知道,他们都是在全球半导体代工领域举足轻重的玩家——根据拓墣产业研究院在 2019 年 6 月中旬发布的排行榜,全球芯片代工企业的前三名分别是台积电、三星、GF,其中台积电的市场份额为 49.2%,第二名三星的份额为 18%,而第三名 GF 的市场份额为 8.7%。因此,他们之间的产生关于专利的法律纠纷,可以称得上是半导体行业的大震荡。
今年 8 月 26 日,GF 在美国和德国对台积电发起诉讼,称台积电侵犯了其 16 项专利;这起诉讼分别在美国国际贸易委员会(ITC)、位于 Delaware 和德克萨斯州西部的美国联邦地区法院以及德国杜塞尔多夫和慕尼黑的地区法院发起。
雷锋网注:上图为 GF 对台积电的 16 项指控
其实,将台积电代工的半导体产品进口至美国和德国的,并不是台积电本身,而是台积电的客户。也就是说,GF 在美德两国对台积电提起诉讼,实际上是在寻求一个更广泛的禁令,即只要相关企业的产品中包含了本案所涉及的芯片,就不能进口至美国和德国。
如果 GF 的诉讼得到了法律的支持,众多消费者电子产品厂商和 科技 企业都要受到影响。根据 Tom's Hardware 的解读,本案所涉及的 20 家企业列表如下:
GF 在八月对台积电提起第一起诉讼时,台积电就称这些指控是毫无根据的,它将在法庭上为自己辩护。除此之外,台积电发言人 Elizabeth Sun 也针对这起诉讼进行了回应:
时至十月初,台积电驳回了 GF 的指控,并反过来对 GF 提起诉讼,指控其侵犯了台积电节点流程相关的 25 项专利。
总而言之,同为全球半导体代工领域的重要参与者,两家公司之间有着千丝万缕的联系,其中不乏在利益方面的碰撞。近日,两家公司握手言和,签订交叉许可协议也算得上是一件值得欣慰的事情;毕竟持续的诉讼的结果大概率是两败俱伤,更重要的是将精力倾注到产品和技术创新上。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)