关键词:物联网 射频识别 M2M
中图分类号:TN91 文献标识码:A 文章编号:1672-3791(2012)05(b)-0023-01所谓物联网,就是利用射频自动识别技术,实现物体和物体之间能够识别的网络。EPC global的Auto-ID中心的提出的定义是:把所有物品通过射频识别等信息窗设备与互联网连接起来,实现智能化识别与管理。从本质上来说物联网是互联网技术的一种延伸,涵盖信息主要包含了射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等传感设备。设备之间按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。其中主要包括了两种概念:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。
1 物联网涉及关键技术
11射频识别技术(RFID)
RFID射频识别技术是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签, *** 作快捷方便。在物联网中重要起“使能”(Enable)作用。
射频识别技术应用非常广泛,目前产品:RFID读写器、RFID标签等已经广泛应用了,典型应用范围:门禁控制、航空包裹识别、文档追踪管理、包裹追踪识别、畜牧业、产品防伪、票证管理、汽车晶片防盗器、停车场管制、生产线自动化等。
12传感器技术
传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。因此可以说,传感器是人类五官的延长,又称之为电五官。在我们生活中声控灯、自动门、遥控器等都是传感器的典型应用。
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。
13M2M
M2M是机器对机器(machine-to-machine)通信的简称。是多种不同类型的通信技术有机的结合在一起实现机器之间通信、机器控制通信、人机交互通信以及移动互联通信等。M2M让机器、设备、应用处理过程与后台信息系统共享信息,并与 *** 作者共享信息;它提供了设备实时的在系统之间、远程设备之间或和个人之间建立无线连接,实现数据传输。
14其他技术
物联网还包含了其他如纳米技术、智能潜入技术以及工业化和信息化的融合技术等等在此就不一一详述了。
2 物联网应用领域
21城市管理
通过物联网可以实现智能交通,物联网技术可以自动检测并报告公路、桥梁的“健康状况”,还可以避免过载的车辆经过桥梁。在交通控制方面,可以通过检测设备,在道路拥堵或特殊情况时,系统自动调配红绿灯,并可以向车主预告拥堵路段、推荐行驶最佳路线。
22公共安全
通过物联网与摄录技术综合起来,我们可以实现人脸自动识别技术、车牌自动识别技术、指纹识别技术等可以有效增加公安机关的办案效率,增强社会安全保障。
23家电行业
将家庭所有家电家具实现物联网连接,可以实现真正的智能化家庭。典型的例子是海尔曾经通过物联网网桥(WSNBridge),实现了用户通过手机、互联网、固话与家中灯光、窗帘、报警器、电视、空调、热水器等电器设备的沟通,将物联概念与用户的生活实际紧密联系起来,使之成为了一种像水、电、气一样的用户居家生活的基础应用服务;海尔的全球首款“物联网冰箱”具有网络可视电话功能、浏览资讯、播放视频等多项生活与娱乐功能,让原本属于生活电器的冰箱成为一个娱乐中心。
24医护行业
医护领域的物联网应用主要在人体的监护和生理参数的测量等方面,利用传感器可以对人体的各种状况进行监控,将数据传送到各种通信终端上。在美国曾经实现了在鞋垫上设置传感器对有特殊病情老人通过物联网进行监控,最终获得有效数据实现最佳治疗效果。
25物流行业
物流行业是使用物联网技术比较早的行业,由RFID等技术和移动手持设备组成物联网后,基于感知的货物数据便可在全球范围内监控货物的流通状态,可以提供全面的货物信息以及物流跟踪信息,能够实时的获得货物以及航运信息,降低物流风险并提高风险的控制能力。
3 物联网技术存在问题
31物联网跟风较多,应用较小
物联网的价值不是一个可传感的网络,而是必须各个行业参与进来进行应用,不同行业,会有不同的应用,也会有各自不同的要求,这些必须根据行业的特点,进行深入的研究和有价值的开发。现阶段的物联网同样现处于跟风这一种现象,很多的企业盲目的炒作物联网,而没有形成具体的应用。物联网的体系基本形成需要一些应用形成示范,更多的传统行业感受到物联网的价值,这样才能有更多企业看清楚物联网的意义。
32物联网标准难以统一
互联网能够快速发展很大原因取决于互联网标准的成功,现阶段的物联网没有形成统一的标准,很难形成产业的规模的应用,对于推动物联网的普及起到很大的阻碍。因此,标准的建立至关重要。
33大规模应用普及需要较长时间
没有标准,整个行业的发展就要受到制约,同样,对于物联网的普及也需要经过很长的时间,而时间的成本,对于快速发展的企业来讲还是有非常大的影响。
34物联网大企业部署较快
从现状来看,提到物联网都是比较高端的人群或者是企业,对于物联网的部署,只有具有一定的实力的企业能做或者承接物联网项目,如中电信、中移动等,对于小企业来讲,物联网的应用还没有具体的涉及到,以至于出现可望可及的现象。
35技术环境不成熟
虽然互联网的发展为物联网迈进了重要的一步,物联网不仅仅需要互联网的支撑,还需要许多如通信、企业应用软硬件的支撑,对于如何实现这些网络的融合,从技术的角度来讲,需要涉及到大量跨行业、跨企业的协条,导致了物联网在技术方面还存在很大方面的缺
36全社会对物联网的内涵尚未取得共识
虽然物联网受到全社会的普遍关注,但目前物联网的概念和技术架构缺乏统一的清晰描述,全社会对物联网的内涵尚未取得共识。物联网从广义上认为是深度信息化,狭义上认为是此深度信息化的承载网络,这其中的“深度还需要业内人士共同探讨,不断发展完善。
我们在了解人工智能技术的时候,对于深度学习的概念进行了一次普及,今天我们就一起来学习一下深度学习对于物联网的发展都有哪些影响作用。下面霍营电脑培训就开始今天的主要内容吧。
技术
在物联网时代,大量的感知器每天都在收集并产生着涉及各个领域的数据。由于商业和生活质量提升方面的诉求,应用物联网(IoT)技术对大数据流进行分析是十分有价值的研究方向。这篇论文对于使用深度学习来改进IoT领域的数据分析和学习方法进行了详细的综述。从机器学习视角,作者将处理IoT数据的方法分为IoT大数据分析和IoT流数据分析。论文对目前不同的深度学习方法进行了总结,并详细讨论了使用深度学习方法对IoT数据进行分析的优势,以及未来面临的挑战。
在本系列文章中,已介绍了深度学习和长短期记忆(LSTM)网络,展示了如何生成用于异常检测的数据,还介绍了如何使用Deeplearning4j工具包。本篇文章中,将介绍开源机器学习系统ApacheSystemML如何通过动态地优化执行并利用ApacheSpark作为运行时引擎,帮助执行线性代数运算。并展示了在时序传感器数据(或任何类型的一般序列数据)上,即使非常简单的单层LSTM网络的性能也优于先进的异常检测算法。
GoogleAssistant和其他自然语言理解平台正在推动用户如何使用他们的技术。无论是执行器诸如设置计时器之类的简单任务,还是进行更复杂的任务(例如Google智能助理调整恒温器),您都可以参与其中。在这篇文章中,逐步介绍了如何构建自己的助手应用程序,通过简单地要求Google来控制AndroidThings设备来浇灌植物。
开源
tinyweb是一个用于在运行有MicroPython的ESP8266/ESP32等微型设备之上的简单轻便的>
Mynewt是一款适用于微型嵌入式设备的组件化开源 *** 作系统。ApacheMynewt使用Newt构建和包管理系统,它允许开发者仅选择所需的组件来构建 *** 作系统。其目标是使功耗和成本成为驱动因素的微控制器环境的应用开发变得容易。Mynewt提供开源蓝牙50协议栈和嵌入式中间件、闪存文件系统、网络堆栈、引导程序、FATFS、引导程序、统计和记录基础设施等的支持。
AngularIotDashboard是一个基于Angular4的物联网领域的仪表板。它是一个适用于任何浏览器的实时兼容仪表板,其目标是成为智能家居,智能办公室和工业自动化的d性前端。拥有许多可重用组件,开发者可以基于AngularIoTDashboard启发和实施自己版本的托管物联网仪表板。
硬件
FemtoUSB是一个基于Atmel的ARMCortexM0+产品ATSAMD21E18A的开源ARM开发板。其被设计成对那些对ARM设计感兴趣的人的基础起点,特别那些准备从AVR8位硬件转换到功能非常强大的ARM32位工具。其从电路板设计,原理图和零件清单完全是开源的,可以让开发者学习设计ARM芯片、编译工具链、ARM芯片的基本的电路图等等的内容。
早在2014年11月的时候,全球最具影响力的管理思想家之一、哈佛商学院教授迈克尔·波特和PTC首席执行官Jim Heppelman 在《哈佛商业评论》上发表了一篇具有重大影响力的文章——《智能互联产品如何改变竞争》。他们认为,物联网互联产品将改变传统的产业结构、商业模式以及许多行业的竞争本质。自从这篇文章发表以来,世界上已经出现了许多颠覆性的物联网商业模式创新。例如:iRobot公司凭借其自主物联网连接的吸尘机器人,实现了从零到900万台物联网连接设备的销售量,从而改变整个吸尘器行业的状态;Thyssenkrupp电梯物联网连接的电梯已经从零增加到130,000个,其三个主要竞争对手Otis、Schindler和Kone都引入了类似的基于IoT的商业模式;共享单车行业,在美国已经从零发展到3900万人次,基本上就是通过物联网技术的出现而创建的。
还有成千上万的新智能产品/物联网商业模式的例子,还在酝酿中。那些目前正在(或计划将)智能互联产品推向市场的企业,可以从这些早期的创新者身上学到什么?前不久,市场咨询公司IoT Analytics发布了《2020 IoT商业化和商业模式采用》,探讨了全球领先的设备和产品制造商(OEM)在过去5年如何成功推出智能互联物联网产品以及心得体会。
开发一个物联网业务模式或业务模型并将之商业化并不简单,但可能会是颠覆性的“ 游戏 规则改变者”。61%参与了IoT Analytics研究报告者声称,与竞争对手相比,物联网商业模式让其公司获得了竞争优势。
将智能连接产品推向市场时,需要进行很多考量,例如:是首先接触现有客户,还是瞄准新客户;可以通过硬件、软件、服务或数据获利,还是这些的组合;是一次性收费,还是按月收费,甚至可能是按使用量收费;是否免费提供某些功能;是按成本定价,还是按利润率定价,或者是通过亏损以获得早期市场份额;是直接销售给客户,还是通过第三方(市场)销售等等。
物联网商业模式与产品开发和产品商业化这两个相邻的环节紧密相连。IoT Analytics将其分为3个部分: 开发物联网产品(例如上市时间和开发功能)、开发物联网商业模式(该分析主要基于Zollenkop框架,着眼于三个要素:市场定位、价值链和收入模型)以及物联网产品的商业化(例如:确定合适的价格水平、推动采用的措施和衡量成功的KPI)。
IoT Analytics的报告就这些问题给出了相应的6个观点,并强调了哪些物联网商业模式被认为更成功。
观点1。智能连接物联网产品,从内部项目启动到第一个付费用户平均需要23个月。然而,从开始到第一次付费客户所需的总时间,相比平均值有巨大差异。最快的实现发生在8个月,而最长的可能需要长达76个月(根据IoT Analytics的分析)。
观点2。有许多因素驱动了将智能互联物联网产品推向市场的复杂性。特别是较大的公司必须花更多的时间来协调多个部门和流程。根据分析,典型的物联网产品的引入会“主要影响”到6个部门(其中IT和R&D受影响最大)。
推动IT和研发部门工作的,是在IoT互联产品中加入许多软件特性和服务。物联网产品平均拥有12项新功能,几乎所有物联网公司(91%)都为客户提供监控仪表板,而库存管理或工作流优化等功能则很少见。
观点3。在这次分析中,近四分之三的受访者开发了一款全新的或主要经过重新设计的产品,而这种产品以前并不存在。大多数受访者还表示,物联网产品的销售对象是一些新的决策者(以及一些现有的决策者)。结果是,52%的物联网商业模式可以归类为“多元化”,只有11%归类为“市场渗透”,即在现有产品加上小的附加功能,销售给和以前完全相同的决策者。
观点4。目前,超过95%的物联网硬件都已获利。然而,在大多数情况下,硬件只是多种变现方式的一部分。大多数研究参与者预计,未来两年,服务(包括传统和数字)和数据的重要性将显著提高。随着硬件获利重要性的下降,预计基于时间、使用和成功而盈利的模式的重要性将会增加。
欧洲某 汽车 行业高级IT经理表示:“我们未来的重点将更多地放在数字服务上。当前我们对用户只有一个接触点:安装硬件。展望未来,随着数据日趋成熟,以及拥有更好的远程软件更新能力,我们将能够提供更多以用户为中心的SaaS产品/功能,客户可以在网上购买。”
观点5。物联网解决方案的成功商业化在产品推出前很久就开始了。美国某机械设备制造商高级产品经理表示:“在构建和销售解决方案之前,清楚了解客户的需求至关重要。”
分析显示,不同地区的客户采用率存在巨大差异,一些功能显然比其它功能更受客户欢迎。客户采用率排名占前四分之一的两项功能分别是“状态监视”和“预测性维护”,这与IoT Analytics先前关于预测性维护主题的报告相符。
因此,许多研究参与者指出,教育自己的团队,特别是面向客户的员工的重要性就不足为奇了。美国某机械设备制造商高级产品经理表示:“对员工的培训是一项艰巨的任务,因为该技术对公司整体来说是新技术,并且所有领域的专家都需要接受培训。”
当前,我们正在进入全新的“咆哮20年”的开始。这是ARM与经济学人在今年上半年推出的《物联网商业指数2020》所提示的变化:即所有产业面对的障碍正逐渐降低,超过一半的受访企业已经处于物联网网络部署初期或大规模部署阶段。《物联网商业指数2020》强调,物联网的“商业价值之路”已经出现,企业在物联网方面的初期投资通常能够明确的投资回报,而随着物联网数据与其它数据集的结合以及纳入整体分析中,物联网的价值也在上升。随着大数据越来越火,企业们都开始纷纷使用大数据来解决问题。在大数据的解决方案中,有一个十分典型的案例,那就是物联网。其实物联网现在早就不是什么新兴的概念了,物联网现在有很多的成品已经进入了我们的生活中。在这篇文章中我们就重点为大家介绍一下关于物联网架构的相关知识。
1物联网的架构
物联网是有设备、现场网关、云网关、应用程序后端组成,物联网涉及到了云计算、大数据、嵌入式、单片机等内容,而云网关使用可靠、低延迟的消息传递系统在云边界引入设备事件。设备可能会直接将事件发送到云网关,或通过现场网关发送。现场网关是一种专用设备或软件,通常与接收事件并将事件转接到云网关的设备位于同一位置。现场网关也可预处理原始设备事件,执行过滤、聚合或协议转换等功能。当这个消息引入后,事件将通过一个或多个流处理器,此处理器可将数据路由到存储等位置,也可执行分析和其他处理。这样就是物联网架构工作原理。
2物联网常见处理类型
物联网的常见的处理类型具体就是将事件数据写入冷存储,用于存档或批处理分析。然后就是热路径分析,实时或者近乎实时分析事件流,以检测异常,识别滚动时间范围内的模式,或者在流中出现特殊情况时触发警报。而在处理设备的过程中处理设备中特殊类型的非遥测消息,比如通知和警报。这里还涉及到到了机器学习。通过控制物联网系统的组件去进行设备的运转。
3物联网中有什么是需要注意的?
上面所提到的组件与事件流式传输没有直接关系,而设备注册表是预配设备的数据库,包括设备ID和常见的设备元数据,如位置信息。而预配 API 是一种常见的外部接口,用于预配和注册新设备。某些物联网的解决方案可使命令和控制消息发送到设备。这样就是物联网的常见处理类型。
在这篇文章中我们给大家介绍了大数据中物联网的架构和常见的处理类型的内容。物联网是现在科技发展的一个方向,有很多的生活用品都实现了万物相联,可见物联网的使用广度还是非常厉害的,有意向往这方面发展的朋友,一定要好好努力哟,相信将来一定学有所成,得到自己想要的人生。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)