第三代半导体材料爆发!氮化镓站上最强风口

第三代半导体材料爆发!氮化镓站上最强风口,第1张

随着市场对半导体性能的要求不断提高,第三代半导体等新型化合物材料凭借其性能优势开始崭露头角,成为行业未来重要增长点。

相对于第一代(硅基)半导体,第三代半导体禁带宽度大,电导率高、热导率高。第三代半导体的禁带宽度是第一代和第二代半导体禁带宽度的近3倍,具有更强的耐高压、高功率能力。

氮化镓(GaN)和碳化硅(SiC)并称为第三代半导体材料的双雄,由于性能不同,二者的应用领域也不相同。

氮化镓、高电流密度等优势,可显著减少电力损耗和散热负载,迅速应用于变频器、稳压器、变压器、无线充电等领域,是未来最具增长潜质的化合物半导体。

与GaAs和InP等高频工艺相比,氮化镓器件输出的功率更大;与LDCMOS和SiC等功率工艺相比,氮化镓的频率特性更好。

随着行业大规模商用,GaN生产成本有望迅速下降,进一步刺激GaN器件渗透,有望成为消费电子领域下一个杀手级应用。

GaN主要应用于生产功率器件,目前氮化镓器件有三分之二应用于军工电子,如军事通讯、电子干扰、雷达等领域。

在民用领域,氮化镓主要被应用于通讯基站、功率器件等领域。氮化镓基站PA的功放效率较其他材料更高,因而能节省大量电能,且其可以几乎覆盖无线通讯的所有频段,功率密度大,能够减少基站体积和质量。

氮化镓在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。随着5G高频通信的商业化,GaN将在电信宏基站、真空管在雷达和航空电子应用中占有更多份额。

根据Yole估计,大多数Sub 6GHz的蜂窝网络都将采用氮化镓器件,因为LDMOS无法承受如此之高的频率,而砷化镓对于高功率应用又非理想之选。

同时,由于较高的频率会降低每个基站的覆盖范围,需要安装更多的晶体管,因此市场规模将迅速扩大。

Yole预测,GaN器件收入目前占整个市场20%左右,到2025年将占到50%以上,氮化镓功率器件规模有望达到4.5亿美元。

从产业链方面来看,氮化镓分为衬底、外延片和器件环节。

尽管碳化硅被更多地作为衬底材料(相较于氮化镓),国内仍有从事氮化镓单晶生长的企业,主要有苏州纳维、东莞中镓、上海镓特和芯元基等。

从事氮化镓外延片的国内厂商主要有三安光电、赛微电子、海陆重工、晶湛半导体、江苏能华、英诺赛科等。

从事氮化镓器件的厂商主要有三安光电、闻泰 科技 、赛微电子、聚灿光电、乾照光电等。

GaN技术的难点在于晶圆制备工艺,欧美日在此方面优势明显。由于将GaN晶体熔融所需气压极高,须采用外延技术生长GaN晶体来制备晶圆。

其中日本住友电工是全球最大GaN晶圆生产商,占据了90%以上的市场份额。GaN全球产能集中于IDM厂商,逐渐向垂直分工合作模式转变。美国Qorvo、日本住友电工、中国苏州能讯等均以IDM模式运营。

近年来随着产品和市场的多样化,开始呈现设计业与制造业分工的合作模式。

尤其在GaN电力电子器件市场,由于中国台湾地区的台积电公司和世界先进公司开放了代工产能,美国Transphorm、EPC、Navitas、加拿大GaN Systems等设计企业开始涌现。

在射频器件领域,目前LDMOS(横向扩散金属氧化物半导体)、GaAs(砷化镓)、GaN(氮化镓)三者占比相差不大,但据Yoledevelopment预测,至2025年,砷化镓市场份额基本维持不变的情况下,氮化镓有望替代大部分LDMOS份额,占据射频器件市场约50%的份额。

GaAs芯片已广泛应用于手机/WiFi等消费品电子领域,GaN PA具有最高功率、增益和效率,但成本相对较高、工艺成熟度略低,目前在近距离信号传输和军工电子方面应用较多。

经过多年的发展,国内拥有昂瑞微、华为海思、紫光展锐、卓胜微、唯捷创芯等20多家射频有源器件供应商。

根据2019年底昂瑞微董事长发表的题为《全球5G射频前端发展趋势和中国公司的应对之策》的报告显示,截至报告日,国内厂家在2G/3G市场占有率高达95%;在4G方面有30%的占有率,产品以中低端为主,销售额占比仅有10%。

目前我国半导体领域为中美 科技 等领域摩擦中的卡脖子方向,是中国 科技 崛起不可回避的环节,产业链高自主、高可控仍是未来的重点方向。第三代半导体相对硅基半导体偏低投入、较小差距有望得到重点支持,并具备弯道超车的可能。

镓与玻璃很合得来。把镓镀在玻璃上,可以制成很好的镜子。由于镓镜反射光的本领很强,并且能够经受很高的温度,在工业上获得了各种各样特殊的用途。

镓的熔点低,可与锌、锡、铟等制成易熔合金,用来制造自动救火龙头——当失火时,温度一升高,易熔合金就熔化了,水便从龙头中自动喷出。在镁中加入少量镓,可以提髙镁的耐腐蚀性。镓也被用来制造镶牙合金。在原子能工业上,镓和铊的合金,被用来做载热剂。

人们利用镓熔点低的这一特点,用它来制造光电管。光电管受光线照射,便会产生光电流,光线越强,光电流越大,成了自动控制设备中的重要元件。另外,在电影、电视、光度计中,也要用到光电管。在医学上,铯的化合物用来医治休克病、白喉等。

扩展资料:

镓的化学性质

镓的脾气很古怪:它的熔点虽低,沸点却非常高,它要到1893℃才会沸腾!也就是说,从29.8℃到1893℃之间,镓一直是液态,而水银在360℃就沸腾了。所以,镓被用来制造高温温度计。这种温度计的外壳,用耐高温的石英玻璃制造。它可以测量1500℃以下的髙温。

镓在地球上非常稀少,所以在日常生活中极少看到它的足迹。镓通常住在矾土矿、闪锌矿等矿石里。

除了镓以外,铯放在手上,也会立即熔化。铯的熔点比镓还低,只有28℃。铯和镓一样,也是稀有金属。铯是在1860年被德国化学家本生用光谱分析法发现的。铯是银白色的金属,化学性质非常活泼。在空气中,它会自燃,射出紫色的光芒。铯一受光照,会释放出电子。

参考资料来源:百度百科-镓

p型半导体中掺入的三价元素是硼、铟、镓等。

要产生较多的空穴浓度就需依赖掺杂或缺陷。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。

对于Ⅳ族元素,半导体(锗、硅等)需进行Ⅲ族元素的掺杂对于Ⅲ-Ⅴ族化合物半导体(如砷化镓),常用掺杂Ⅱ族元素来提供所需的空穴浓度。

在纯硅中掺入微量3价元素铟或铝,由于铟或铝原子周围有3个价电子,与周围4价硅原子组成共价结合时缺少一个电子,形成一个空穴。空穴相当于带正电的粒子,在这类半导体的导电中起主要作用。

扩展资料:

在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。

由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。

参考资料来源:百度百科--P型半导体

参考资料来源:百度百科--半导体


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9102271.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存