基于
量子半导体材料的器件有:分子震荡器,量子陀螺仪,量子激光器,量子放大仪,量子磁强计还有量子晶体管等。根据查询相关公开信息显示:量子
半导体是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。晶格现象:音子、热传导\r\n静电现象:压电效应\r\n电导:绝缘体、导体、半导体、电导、能带结构、近藤效应、量子霍尔效应、超导现象\r\n磁性:铁磁性\r\n低温态:玻色-爱因斯坦凝聚、超流体、费米子凝聚态\r\n维效应:量子线、量子点\r\n\r\n量子信息学\r\n目前研究的焦点在于一个可靠的、处理量子状态的方法。由于量子状态可以叠加的特性。理论上,量子计算机可以高度平行运算。它可以应用在密码学中。理论上,量子密码术可以产生完全可靠的密码。但是,实际上,目前这个技术还非常不可靠。另一个当前的研究项目,是将量子状态传送到远处的量子隐形传送。\r\n\r\n在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都关键地依靠了
量子力学的原理和效应。对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。半导体的技术实际上是基于由量子力学派生出来的能带论,或者固体的能带论跟量子力学里的一些重要的结论。
量子力学除了应用到原子、分子、原子核、粒子等微观体系外,它还被应用到固体领域等复杂体系,用它解释了铁磁体、铁电体等物质的电磁性质,也解释了为什么有些材料是绝缘体,有些是导体。
尤为重要的是,解释了为什么某些材料是半导体。而且根据量子力学,在这些半导体中,可以有电子导电、空穴导电等等区别,从而又提出半导体的二极管、三极管等等的观念。后来又发展为集成线路。大规模集成线路的组合,成为现代电子计算机的技术基础。可以说,没有量子力学,就没有以电脑控制占主导地位的现代化工业。
评论列表(0条)