石墨烯缺点:
事实上,半导体电子管诞生初期就有过是不是应该用功耗更低的锗来做半导体的基材的讨论。最后因为成本以及硅电路过去的积累最终使产业界放弃了这一打算,今天引入的新材料,如果不能解决上面这些关键问题,面对的壁垒比当年的锗半导体材料只大不小。
石墨烯芯片成为新的突破口
我们日常所说的数字芯片广义上指的是硅基芯片,但随着芯片技术的迭代,到达7nm节点之后,再要往前进一点面临的都是几十甚至上百倍的困难。目前数字芯片的迭代也已经逼近物理临界点,想要实现突破,继续在最先进制程上死磕是没用的。
在这种情况下,各国也都开始寻找新的材料以取代传统的硅基芯片,谁能最先找到并取得进展,谁就能在未来的发展中拥有更多的话语权。这对我们来说无疑是一个机会。
当然这并不是说我们就放弃了先进制程的研究,而是我们在追求先进制程的过程中,也在不断寻找新的突破口,以实现弯道超车。
今日华为消费者业务总裁余承东说华为将停止麒麟芯片的生产,听到这个消息我很想哭,发自内心的难受!作为一个忠实的铁粉非常失落!
记得2018年余承东在某发布会上说,华为已经进入石墨烯芯片的研发,而石墨烯制造的芯片电磁延迟时间缩短整整1000倍,这也意味着石墨烯芯片处理信号时间能够缩短1000倍,运算速度也能够提升1000倍,这样的性能又让人热血沸腾!从余总18年说出这一消息,也说明华为对石墨烯芯片的研发时间已经不算短!
石墨烯材料是制造业领域的一种高端材料,甚至被誉为世界最强的一种晶体,这种材料具有优秀的导热导电性能,并且可塑造性强,堪称一种万能超导材料,也正是因为石墨烯在工业发展中存在着巨大潜力,所以中国科学家们长期以来一直在密切关注石墨烯材料技术的发展,并且努力突破这种技术,如今石墨烯在芯片领域已经取得了成功。
如今世界上各主要 科技 强国都在致力于研制超级计算机,而这些计算机的性能实现也离不开各种芯片,毕竟计算机运算能力强弱的关键就在于芯片处理速度,受传统芯片技术影响限制,现有的计算机运算性能想要提升已经变得非常困难,目前各国主流做法就是给计算机增加更多的芯片,然而石墨烯芯片的出现从根本上解决了这一难题,由于石墨烯芯片的速度性能提升了1000倍,所以一块石墨烯芯片就等于1000块传统芯片。
石墨烯因其超薄结构以及优异的物理特性,在 FET 应用上展现出了优异的性能和诱人的应用前景. 如 Obradovic 等研究发现,与碳纳米管相比,石墨烯 FET 拥有更低的工作电压﹔Wang
等所制备的栅宽 10nm 以下的石墨烯带 FET 的开关比达 10的7次方 ﹔Wu 等采用热蒸发 4H-SiC 外延生长的石墨烯制备的 FET,其电子和空穴迁移率分别为 5,400 和4400平方厘米 /V•s,比传统半导体材料如 SiC 和 Si 高很多﹔Lin 等制备出栅长为 350nm 的高性能石墨烯 FET,其载流子迁移率为2700 平方厘米 /V•s,截止频率为 50GHz,并在后续研究中进一步提高到 100GHz﹔Liao 等所制备的石墨烯 FET 的跨导达 3.2mS/μm,并获得了迄今为止最高的截止频率 300GHz,远远超过了相同栅长的 Si-FET (~40GHz)。然而, 由于石墨烯的本征能隙为零,并且在费米能级处其电导率不会像一般半导体一样降为零,而是达到一个最小值,这对于制造晶体管是致命的,为石墨烯始终处于“开”的状态。
另外,带隙为零意味着无法制作逻辑电路,这成为石墨烯应用于晶体管等器件中的主要困难和挑战。因此, 如何实现石墨烯能带的开启与调控,亟待研究和解决。
纳米碳材料,特别是石墨烯具有极其优异的电学、光学、磁学、热学和力学性能,是理想的纳电子和光电子材料。石墨烯具有特殊的几何结构,使得费米面附近的电子态主要为扩展π态。由于没有表面悬挂键,表面和纳米碳结构的缺陷对扩展 π 态的散射几乎不太影响电子在这些材料中的传输,室温下电子和空穴在石墨烯中均具有极高的本征迁移率 (大于 100000平方厘米/V•S ),超出最好的半导体材料 (典型的硅场效应晶体管的电子迁移率为1000 平方厘米/V•S )。作为电子材料,石墨烯可以通过控制其结构得到金属和半导体性管。在小偏压的情况下,电子的能量不足以激发石墨烯中的光学声子,但与石墨烯中的声学声子的相互作用又很弱,其平均自由程可长达数微米,使得载流子在典型的几百纳米长的石墨烯器件中呈现完美的d道输运特征。典型的金属性石墨烯中电子的费米速度为
,室温电阻率为
,性能优于最好的金属导体,例如其电导率超过铜。由于石墨烯结构中的 C–C 键是自然界中最强的化学键之一,不但具有极佳的导电性能,其热导率也远超已知的最好的热导体,达到 6,000W/mK。此外石墨烯结构没有金属中的那种可以导致原子运动的低能缺陷或位错,因而可以承受超过10的9次方A 平方厘米的电流,远远超过集成电路中铜互连线所能承受的10 的6次方A 平方厘米 的上限,是理想的纳米尺度的导电材料。理论分析表明,基于石墨烯结构的电子器件可以有非常好的高频响应,对于d道输运的晶体管其工作频率有望超过 THz,性能优于所有已知的半导体材料。
所以石墨烯是目前作为芯片最理想半导体材料!华为早些年开始了石墨烯芯片的研发,又在前段时间透露华为芯片生产工艺专利和芯片工艺相关人员的招聘,说明华为在石墨烯芯片领域有了新的突破,现在需要解决的可能是生产工艺和生产设备的研发和调试工作了,相信在未来两年华为的麒麟芯片将用到新的材料(石墨烯),新的芯片构架和新的生产工艺,或许也就是“南泥湾”项目去美化的核心项目之一!
不管是地雷阵还是万丈深渊,我们伟大的华为都会义无反顾的突破所有障碍快速成长成为最伟大的公司!@赵明 @华为中国 @余承东 @华为终端 @荣耀老熊
欢迎大家在评论区评论!喜欢的话就加个关注呗!
中科院早在2020年10月16日,便已经实现了8英寸石墨烯晶圆的量产。毫不夸张地说,石墨烯有望成为用于延续未来摩尔定律的新型材料,我国的石墨烯技术将成为未来全球半导体原材料的重要组成部分。这次IEEE通过将钌、钴等元素混杂到石墨烯晶圆中的试验,也为后续半导体产业链朝石墨烯方向变更提供了一定的基础理论。拿目前我国实现产业链自主化的28纳米制程举例;石墨烯材料优于硅基材料的内置架空性与导电性、散热性,决定了石墨烯芯片优于硅基芯片。同为28纳米制程的石墨烯芯片,其性能是硅基芯片的5~10倍。也就是说,28纳米制程的石墨烯芯片,其性能表现媲美采用5纳米到3纳米制程的硅基芯片。
简单来说,如果日后石墨烯晶圆能够实现大批量生产,与之相匹配的产业链逐步完善。我们完全可以避开国外的EUV光刻机,来生产出质量更优、性能更高、成本更低的芯片。毕竟我国是第一个实现8英寸晶圆量产的国家。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)