到底选择什么材料来做掺杂,有几个方面的考虑:
(1)原子的重量(AtomMass)。掺杂一般是有两种工艺:扩散(diffusion)和离子注入(ionimplantation)。所谓扩散,就是把掺杂原子直接跟单晶硅表面接触,再加上热能的辅助,杂质原子会扩散到硅晶体里面。但是,不同的原子,扩散系数(diffusioncoefficient)是不同的。笼统而言:原子质量越高的,扩散系数会更低,也难扩散到比较深远的位置。而离子注入所能到达的深度,更是跟原子质量息息相关。原子质量越大,越需要高能加速,才能注入到更深的区域。但副作用就是,原子质量越大,加速的能量越高,会对单晶硅造成更严重的晶格损伤(Latticedamage)。如果单晶硅被打成筛子,就成了多晶硅了(armophous),其光学特性和电学特性都会改变。所以,在离子注入之后,一般需要高温煺火(thermalannealing)。高温煺火作用有二:(i)修复晶格损伤,(ii)激活(thermalactivation)掺杂原子的自由电子(或空穴)。这个煺火温度肯定要低于硅的熔点,否则硅片都成液态了。但即便如此,如果latticedamage过于严重,煺火不见得能完全修复。
(2)激活能量(ActivationEnergy)。掺杂的原子进入单晶硅取代硅原子的位置,还需要煺火处理,来激活自由电子(空穴),从而改变半导体材料的导电性。不同的掺杂原子,其电子(空穴),从禁带(bandgap)里面的能级跃迁到导带(conductionband,对应电子)或者价带(valenceband,对应空穴),所需要提供的能量差是不一样的。具体的数值,我记得在半导体物理类的参考书里面有一个表格可以查到。这个能量差越大,需要煺火的温度越高。而集成电路制造,一定是有thermalbudget的,即,不能用太高的温度(+太长的煺火时间),否则会影响之前其他工艺流程所达到的参数。
所以,选择什么元素做掺杂,一定是个综合考量的过程。比如,希望在小区域内形成高浓度掺杂,用离子注入,低能量,重掺杂原子,效果会好。而希望在大的区域内形成比较均匀的低浓度掺杂,用扩散,轻一些的掺杂原子,更能达到目的。
离子注入后退火:加热注入硅片,修复晶格损伤,使杂质原子移动到晶格点,将其激活。高温退火和快速热处理相比,快速热处理更优越。
因为快速热处理可以避免长时间的高温导致杂质扩散,以及减小瞬间增强扩散。
一般来说通过离子注入方式实现参杂,工艺最后都有一个退火过程,一是为了重新完整由于高能离子注入导致的晶格损伤,其次是激活注入的离子。更详细的关于杂志激活的原理推荐看 Slilicon VLSI Technology, Fundamentals,Practice and Modeling,作者Jmaes D. Plummer等,中文译本也有的了,这本书可谓是IC工艺理论中的经典之作~欢迎分享,转载请注明来源:内存溢出
评论列表(0条)