半导体光刻工艺之刻蚀——湿法腐蚀

半导体光刻工艺之刻蚀——湿法腐蚀,第1张

湿法腐蚀的过程中,通过使用特定的熔液与需要腐蚀的薄膜材料进行化学反应,进而除去没有被光刻胶覆盖区域的薄膜。 湿法腐蚀的优点是工艺简单,但是在湿法腐蚀中所进行的化学反应没有特定方向,所以会形成各向同性的腐蚀效果。各向同性是湿法腐蚀固有的特点,也可以说是湿法腐蚀的缺点。湿法腐蚀通常还会使位于光刻胶边缘下边的薄膜也被腐蚀,这也会使腐蚀后的线条宽度难以控制,选择合适的腐蚀速度,可以减小对光刻胶边缘下边薄膜的腐蚀。 在进行湿法腐蚀的过程中,熔液里的反应剂与被腐蚀薄膜的表面分子发生化学反应,生成各种反应产物。这些反应产物应该是气体,或者是能溶于腐蚀液中的物质。这样,这些反应产物就不会再沉积到被腐蚀的薄膜上。控制湿法腐蚀的主要参数包括:腐蚀溶液的浓度、腐蚀的时间、反应温度以及溶液的搅拌方式等。由于湿法腐蚀是通过化学反应实现的,所以腐蚀液的浓度越高,或者反应温度越高,薄膜被腐蚀的速率也就越快。此外,湿法腐蚀跌反应通常会伴有放热和放气。反应放热会造成局部反应温度的升高,使反应速度加快;反应速率加快又会加剧反应放热,使腐蚀反应处于不受控制的恶性循环中,其结果将导致腐蚀的图形不能满足要求。反应放气产生的气泡会隔绝局部的薄膜与腐蚀的接触,造成局部的反应停止,形成局部的缺陷。因此,在湿法腐蚀中需要进行搅拌。此外,适当的搅拌(例如使用超声波震荡),还可以在一定程度上减轻对光刻胶下方薄膜的腐蚀。 目前常用的湿法腐蚀的材料包括:Si,SiO2和Si2N4等,下面我们将对此进行简要讨论。 一、Si的湿法腐蚀 在湿法腐蚀Si的各种方法中,大多数都是采用强氧化剂对Si进行氧化,然后利用HF酸与SiO2反应来去除SiO2,从而达到对硅的腐蚀目的。最常用的腐蚀溶剂是硝酸与氢氟酸和水(或醋酸)的混合液,化学反应方程式为 Si+HNO3+6HF——H2SiF4+HNO2+H2O+H2 其中,反应生成的H2SiF4可溶于水。在腐蚀液中,水是作为稀释剂,但最好用醋酸(CH3COOH),因为醋酸可以抑制硝酸的分解,从而使硝酸的浓度维持在较高的水平。对于HF-HNO3混合的腐蚀液,当HF的浓度高而HNO3的浓度低时,Si膜腐蚀的速率由HNO3浓度决定(即Si的腐蚀速率基本上与HF浓度无关),因为这时有足量的HF去溶解反应中生成的SiO2.当HF的浓度低而HNO3浓度高时,Si腐蚀的速率取决于HF的浓度(即取决于HF溶解反应生成的SiO2的能力)。 对Si的湿法腐蚀还可以用KOH的水溶液与异丙醇(IPA)相混合来进行。对于金刚石或闪锌矿结构,(111)面的原子比(100)面排的更密,因而(111)面的腐蚀速度应该比(100)面的腐蚀速率小。 采用SiO2层作为掩膜对(100)晶向的硅表面进行腐蚀,可以得到V形的沟槽结构。如果SiO2上的图形窗口足够大,或者腐蚀的时间比较短,可以形成U形的沟槽。如果被腐蚀的是(110)晶向的硅片,则会形成基本为直壁的沟槽,沟槽的侧壁为(111)面。这样就可以利用腐蚀速率对晶体取向的依赖关系制得尺寸为亚微米的器件结构。不过,这种湿法腐蚀的方法大多采用在微机械元件的制造上,在传统的集成电路工艺中并不多见。 二、SiO2的湿法腐蚀 SiO2的湿法腐蚀可以使用氢氟酸(HF)作为腐蚀剂,其反应方程式为: SiO2+6HF——SiF4+2H2O+H2 在上述的反应过程中,HF不断被消耗,因此反应速率随时间的增加而降低。为了避免这种现象的发生,通常在腐蚀液中加入一定的氟化氨作为缓冲剂(形成的腐蚀液称为BHF)。氟化氨分解反应产生HF,从而维持HF的浓度。NH4F分解反应方程式为 NH4F——NH3+HF 分解反应产生的NH3以气态被排除掉。 在集成电路工艺中,除了需要对热氧化和CVD等方式得到的SiO2进行腐蚀外,还需要对磷硅玻璃(简称PSG)和硼磷硅玻璃(简称BPSG)等进行腐蚀。因为这些二氧化硅层的组成成分并不完全相同,所以HF对这些SiO2的腐蚀速率也就不完全一样。基本上以热氧化方式生成的二氧化硅层的腐蚀速率最慢。 三、Si3N4的湿法腐蚀 Si3N4也是一种常用湿法腐蚀的材料。Si3N4可以使用加热的磷酸(130-150度的H3PO4)来进行腐蚀。磷酸对Si3N4的腐蚀速率通常大于对SiO2的腐蚀速率。

物质失电子的作用叫氧化反应;相反的,得电子的作用叫还原。狭义的氧化反应指物质与氧化合;还原反应指物质失去氧的作用。氧化时氧化值升高;还原时氧化值降低。氧化、还原都指反应物(分子、离子或原子)。氧化也称氧化反应。有机物反应时把有机物引入氧或脱去氢的作用叫氧化;引入氢或失去氧的作用叫还原。物质与氧缓慢反应缓缓发热而不发光的氧化叫缓慢氧化,如金属锈蚀、生物呼吸等。剧烈的发光发热的氧化叫燃烧。

氧化法(operation both with oxidation and reduction)

电弧炉炼钢的传统 *** 作方法,其特点是兼有氧化期和还原期。又称双渣法。通过向熔池中加铁矿石和吹氧,使钢液中碳、锰、硅、硫、磷等元素氧化,生成一氧化碳气体和氧化物夹杂,一氧化碳逸出造成钢水、炉渣的沸腾,使钢中气体析出,氧化物夹杂随之进入渣,达到净化钢水的目的。采用氧化法炼钢,金属料选用的范围比较宽,各种废钢均可使用,对废钢铁料的质量如锈蚀和硫、磷含量等要求不严格。

氧化法的 *** 作方法是:熔清后将铁矿石分批加入炉内(或吹氧气),熔池开始沸腾,钢液温度逐渐升高,脱碳反应开始,一般要求脱碳量在0.3%~0.4%左右,脱碳速度要均匀,保持在0.01%~0.02%/min,因此在配金属料时要多配些碳量,可采用增加生铁比例或配加电极碎块。因脱碳是吸热反应,熔池中需要有一定的其他元素(硅、锰等)含量,使硅、锰氧化放热以供给脱碳反应所需的热。在 *** 作时要密切注意炉渣碱度和流动性,随时用造渣剂加以调整,良好的标志是沸腾渣液能自动从炉门口溢出,达到去磷效果。矿石用量约为40kg/t,每批加入间隔时间为5~10min,氧用量根据脱碳情况决定。取钢样分析化学成分,当碳不高于规格下限,磷小于规定,温度合适,扒去全部氧化渣。进入还原期。再造高碱度还原渣,即还原期 *** 作同一般电弧炉炼钢 *** 作相同。

湿式氧化法是使液体中悬浮或溶解状有机物在有液相水存在的情况下进行高温高压氧化处理的方法。氧化反应在压入高压空气,反应温度300℃条件下进行。可用于高浓度(4-6%左右)有机物的粪便、下水污泥以及工厂排液等的处理和药剂回收。用于处理粪便及下水污泥时,反应后进行固液分离,再用活性污泥法等对分离液进行处理。

该工艺的优点为:①流出物被完全杀菌②使下水污泥及粪便等具有良好的沉淀分离性能③装置尺寸小④不污染大气。缺点为:①易腐蚀反应器②排放水有色度③有烧焦气味。

随着水资源的不断缺乏和水质的不断恶化,污水回用得到了越来越广泛的重视。对污水回用过程中使用的几种深度处理方法进行了总结,并对它们的机理以及应用作了简要概述,同时提出了这些方法今后的研究热点和发展前景。

:污水回用  深度处理  活性炭吸附法  膜分离法  高级氧化法  臭氧法

我国是严重缺水的国家之一,尤其是城市化快速发展时期,城市缺水状况越来越严重。为解决大量的工业生产用水和市政或生活辅助用水,污水回用成为可靠的第二水源。污水深度处理及回用不仅缓解了供水不足、水污染和改善生态环境等问题,而且提高了回用水的水质、水量及其经济附加值,使之具有更广泛的应用空间,从而创造更多的经济效益。

1  污水的几种深度处理方法

污水深度处理,也称高级处理或三级处理。它是将二级处理出水再进一步进行物理、化学和生物处理,以便有效去除污水中各种不同性质的杂质,从而满足用户对水质的使用要求。深度处理常见的方法有以下几种。

1.1  活性炭吸附法

活性炭是一种多孔性物质,而且易于自动控制,对水量、水质、水温变化适应性强,因此活性炭吸附法是一种具有广阔应用前景的污水深度处理技术。活性炭对分子量在500~3 000的有机物有十分明显的去除效果,去除率一般为70%~86.7%[1],可经济有效地去除嗅、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等。

常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性碳(BAC)三大类。近年来,国外对PAC的研究较多,已经深入到对各种具体污染物的吸附能力的研究。淄博市引黄供水有限公司根据水污染的程度,在水处理系统中,投加粉末活性炭去除水中的COD,过滤后水的色度能降底1~2度;臭味降低到0度[2]。GAC在国外水处理中应用较多,处理效果也较稳定,美国环保署(USEPA)饮用水标准的64项有机物指标中,有51项将GAC列为最有效技术[3]。

GAC处理工艺的缺点是基建和运行费用较高,且容易产生亚硝酸盐等致癌物,突发性污染适应性差。如何进一步降低基建投资和运行费用,降低活性炭再生成本将成为今后的研究重点。BAC可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质。不足之处在于活性炭微孔极易被阻塞、进水水质的pH 适用范围窄、抗冲击负荷差等。目前,欧洲应用BAC技术的水厂已发展到70个以上,应用最广泛的是对水进行深度处理[4]。抚顺石化分公司石油三厂采用BAC技术,既节省了新鲜水的补充量,减少污水排放量,减轻水体污染,降低生产成本,还体现了经济效益和社会效益的统一[5]。今后的研究重点是降低投资成本和增加各种预处理措施与BAC联用,提高处理效果。

1.2  膜分离法

膜分离技术是以高分子分离膜为代表的一种新型的流体分离单元 *** 作技术[6,7]。它的最大特点是分离过程中不伴随有相的变化,仅靠一定的压力作为驱动力就能获得很高的分离效果,是一种非常节省能源的分离技术。

微滤可以除去细菌、病毒和寄生生物等,还可以降低水中的磷酸盐含量。天津开发区污水处理厂采用微滤膜对SBR二级出水进行深度处理, 满足了景观、冲洗路面和冲厕等市政杂用和生活杂用的需求[8]。

超滤用于去除大分子,对二级出水的COD和BOD去除率大于50%。北京市高碑店污水处理厂采用超滤法对二级出水进行深度处理,产水水质达到生活杂用水标准,回用污水用于洗车,每年可节约用水4 700 m3[9]。

反渗透用于降低矿化度和去除总溶解固体,对二级出水的脱盐率达到90%以上,COD和BOD的去除率在85%左右,细菌去除率90%以上[10]。缅甸某电厂采用反渗透膜和电除盐联用技术,用于锅炉补给水。经反渗透处理的水,能去除绝大部分的无机盐、有机物和微生物[11]。

纳滤介于反渗透和超滤之间,其 *** 作压力通常为0.5~1.0 MPa,纳滤膜的一个显著特点是具有离子选择性,它对二价离子的去除率高达95%以上,一价离子的去除率较低,为40%~80%[12]。潘巧明等人采用膜生物反应器-纳滤膜集成技术处理糖蜜制酒精废水取得了较好结果,出水COD小于100 mg/L,废水回用率大于80%[13]。

我国的膜技术在深度处理领域的应用与世界先进水平尚有较大差距。今后的研究重点是开发、制造高强度、长寿命、抗污染、高通量的膜材料,着重解决膜污染、浓差极化及清洗等关键问题。

1.3  高级氧化法

工业生产中排放的高浓度有机污染物和有毒有害污染物,种类多、危害大,有些污染物难以生物降解且对生化反应有抑制和毒害作用。而高级氧化法在反应中产生活性极强的自由基(如·OH等),使难降解有机污染物转变成易降解小分子物质,甚至直接生成CO2和H2O,达到无害化目的。

1.3.1  湿式氧化法

湿式氧化法(WAO)是在高温(150~350 ℃)、高压(0.5~20 MPa)下利用O2或空气作为氧化剂,氧化水中的有机物或无机物,达到去除污染物的目的,其最终产物是CO2和H2O[14]。福建炼油化工有限公司于2002年引进了WAO工艺,彻底解决了碱渣的后续治理和恶臭污染问题,而且运行成本低,氧化效率高[15]。

1.3.2  湿式催化氧化法

湿式催化氧化法(CWAO)是在传统的湿式氧化处理工艺中加入适宜的催化剂使氧化反应能在更温和的条件下和更短的时间内完成,也因此可减轻设备腐蚀、降低运行费用[16,17]。目前,建于昆明市的一套连续流动型CWAO工业实验装置,已经体现出了较好的经济性[18]。

湿式催化氧化法的催化剂一般分为金属盐、氧化物和复合氧化物3类。目前,考虑经济性,应用最多的催化剂是过渡金属氧化物如Cu、Fe、Ni、Co、Mn等及其盐类。采用固体催化剂还可避免催化剂的流失、二次污染的产生及资金的浪费。

1.3.3  超临界水氧化法

超临界水氧化法把温度和压力升高到水的临界点以上,该状态的水就称为超临界水。在此状态下水的密度、介电常数、粘度、扩散系数、电导率和溶剂化学性能都不同于普通水。较高的反应温度(400~600 ℃)和压力也使反应速率加快,可以在几秒钟内对有机物达到很高的破坏效率。

美国德克萨斯州哈灵顿首次大规模应用超临界水氧化法处理污泥,日处理量达9.8 t。系统运行证明其COD的去除率达到99.9%以上,污泥中的有机成分全部转化为CO2、H2O以及其他无害物质,且运行成本较低[19]。

1.3.4  光化学催化氧化法

目前研究较多的光化学催化氧化法主要分为Fenton试剂法、类Fenton试剂法和以TiO2为主体的氧化法。

Fenton试剂法由Fenton在20世纪发现,如今作为废水处理领域中有意义的研究方法重新被重视起来。Fenton试剂依靠H2O2和Fe2+盐生成·OH,对于废水处理来说,这种反应物是一个非常有吸引力的氧化体系,因为铁是很丰富且无毒的元素,而且H2O2也很容易 *** 作,对环境也是安全的[20]。Fenton试剂能够破坏废水中诸如苯酚和除草剂等有毒化合物。目前国内对于Fenton试剂用于印染废水处理方面的研究很多,结果证明Fenton 试剂对于印染废水的脱色效果非常好。另外,国内外的研究还证明,用Fenton试剂可有效地处理含油、醇、苯系物、硝基苯及酚等物质的废水。

类Fenton试剂法具有设备简单、反应条件温和、 *** 作方便等优点,在处理有毒有害难生物降解有机废水中极具应用潜力。该法实际应用的主要问题是处理费用高,只适用于低浓度、少量废水的处理。将其作为难降解有机废水的预处理或深度处理方法,再与其他处理方法(如生物法、混凝法等)联用,则可以更好地降低废水处理成本、提高处理效率,并拓宽该技术的应用范围。

光催化法是利用光照某些具有能带结构的半导体光催化剂如TiO2、ZnO、CdS、WO3等诱发强氧化自由基·OH,使许多难以实现的化学反应能在常规条件下进行。锐钛矿中形成的TiO2具有稳定性高、性能优良和成本低等特征。在全世界范围内开展的最新研究是获得改良的(掺入其他成分)TiO2,改良后的TiO2具有更宽的吸收谱线和更高的量子产生率。

1.3.5  电化学氧化法

电化学氧化又称电化学燃烧,是环境电化学的一个分支。其基本原理是在电极表面的电催化作用下或在由电场作用而产生的自由基作用下使有机物氧化。除可将有机物彻底氧化为CO2和H2O外,电化学氧化还可作为生物处理的预处理工艺,将非生物相容性的物质经电化学转化后变为生物相容性物质。这种方法具有能量利用率高,低温下也可进行;设备相对较为简单, *** 作费用低,易于自动控制;无二次污染等特点。

1.3.6  超声辐射降解法

超声辐射降解法主要源于液体在超声波辐射下产生空化气泡,它能吸收声能并在极短时间内崩溃释放能量,在其周围极小的空间范围内产生1 900~5 200 K的高温和超过50 MPa的高压。进入空化气泡的水分子可发生分解反应产生高氧化活性的·OH,诱发有机物降解;此外,在空化气泡表层的水分子则可以形成超临界水,有利于化学反应速度的提高。

超声波对含卤化物的脱卤、氧化效果显著,氯代苯酚、氯苯、CH2Cl2、CHCl3、CCl4等含氯有机物最终的降解产物为HCl、H2O、CO、CO2等。超声降解对硝基化合物的脱硝基也很有效。添加O3、H2O2、Fenton试剂等氧化剂将进一步增强超声降解效果。超声与其他氧化法的组合是目前的研究热点,如US/O3、US/H2O2、US/Fenton、US/光化学法。目前,超声辐射降解水体污染物的研究仍处于试验探索阶段。

1.3.7  辐射法

辐射法是利用高能射线(γ、χ射线)和电子束等对化合物的破坏作用所开发的污水辐射净化法。一般认为辐射技术处理有机废水的反应机理是由于水在高能辐射的作用下产生·OH、H2O2、·HO2等高活性粒子,再由这些高活性粒子诱发反应,使有害物质降解。

辐射法对有机物的处理效率高、 *** 作简便。该技术存在的主要难题是用于产生高能粒子的装置昂贵、技术要求高,而且该法的能耗大、能量利用率较低;此外为避免辐射对人体的危害,还需要特殊的保护措施。因此该法要投入运行,还需进行大量的研究探索工作。

1.4  臭氧法

臭氧具有极强的氧化性,对许多有机物或官能团发生反应,有效地改善水质。臭氧能氧化分解水中各种杂质所造成的色、嗅,其脱色效果比活性炭好;还能降低出水浊度,起到良好的絮凝作用,提高过滤滤速或者延长过滤周期。目前,由于国内的臭氧发生技术和工艺比较落后,所以运行费用过高,推广有难度。

2  结  语

污水的深度处理在城市和工业污水回用处理中扮演着非常重要的角色。在传统的生物方法之后,深度处理用于去除额外的污染物、特殊金属以及其他有害成分。现在已有的深度处理方法包括颗粒介质过滤、吸附、膜技术、高级氧化和消毒等。声技术是一种正在发展的、重要的,并且能够得到高质量再生水源的污水回用技术[21]。不断的深入研究将会带来更为有效的污水回用技术的改进,并在未来的污水回用中更为广泛的使用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9116945.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存