《科创板日报》(上海,研究员 何律衡)讯, 近期,以氮化镓、碳化硅为首的第三代半导体材料在A股市场引领了一波 科技 股回暖的热潮,引发市场对功率半导体的瞩目。与此同时,在该领域走在全球前列的日本,却已向号称第四代半导体的氧化镓展露了野心。
据日本媒体最新报道,日本经济产业省(METI)正准备为致力于开发新一代低能耗半导体材料“三氧化镓”的私营企业和大学提供财政支持,METI将为明年留出大约2030万美元的资金,预计未来5年的投资额将超过8560万美元。
在此基础上,第三代半导体材料由于普遍具有直接禁带结构,且禁带宽度更大、电子饱和漂移速度更高等特点,被越来越多地应用到功率半导体上。
在这其中,碳化硅和氮化镓当前应用最为广泛,前者具有宽禁带、高临界击穿电场、高饱和电子迁移速度和高热导率等特性,已在新能源 汽车 的电源管理中有所应用,后者则具有宽禁带、高饱和电子漂移速度、高电子迁移率等物理特性,在消费电子快充产品上得以应用。
而氧化镓被认为是继碳化硅和氮化镓之后的“第三代用于功率元件的宽禁带半导体”。这种材料最初计划用于LED(发光二极管)基板、深紫外光(Deep Ultra Violet)受光素子等,在近十年才被应用于功率半导体方向,继而引发全球研发的热潮。
研究表明,氧化镓的禁带宽度为4.9eV,超过碳化硅、氮化镓等材料,采用禁带更宽的材料可以制成系统更薄、更轻、功率更高的功率器件;击穿场强高于碳化硅和氮化硅,目前 β-Ga2O3 的击穿场强可以达到 8MV/cm,是碳化硅的两倍。
中银证券分析师赵琦3月27日报告指出,氧化镓更有可能在扩展超宽禁带系统可用的功率和电压范围方面发挥作用,其中最有希望的应用可能是电力调节和配电系统中的高压整流器,如电动 汽车 和光伏太阳能系统。
不过,氧化镓的导热率低,散热性能差是限制氧化镓市场运用的主要因素。氧化镓的热管理研究是当前各国研究的主要方向。赵琦认为,如若未来氧化镓的散热问题被攻克,氧化镓将是未来高功率、高压运用的功率半导体材料的有力竞争者。
据外媒报道,今年4月,美国纽约州立大学布法罗分校(the University at Buffalo)正在研发一款基于氧化镓的晶体管,能够承受8000V以上的电压,而且只有一张纸那么薄,将用于制造更小、更高效的电子系统,用在电动 汽车 、机车和飞机上,用于控制和转换电子,同时帮助延长此类交通工具的续航里程。
除了美国之外,从全球范围来看,日本作为全球首个研究氧化镓材料的国家,同样具备竞争优势。METI认为,日本公司将能够在本世纪20年代末开始为数据中心、家用电器和 汽车 供应基于氧化镓的半导体。一旦氧化镓取代目前广泛使用的硅材料,每年将减少1440万吨二氧化碳的排放。
“事实上,日本在氧化镓相关技术方面远远领先于包括韩国在内的竞争对手,”该行业的一位专家向媒体表示,“一旦氧化镓成功商业化,将适用于许多领域,因为它可以比其他材料更大幅度地降低半导体制造成本。”
而在中国,尽管起步较晚,但对于氧化镓的研究也同样不断推进状态中。据国内媒体报道,在去年举行的全国 科技 活动周上,北京镓族 科技 公司公开展示了其研发的氧化镓晶胚、外延片以及基日盲紫外线探测阵列器件。
此外,中国电科46所采用导模法成功已制备出高质量的4英寸氧化镓单晶,其宽度接近100mm,总长度达到250mm,可加工出4英寸晶圆、3英寸晶圆和2英寸晶圆。经测试,晶体具有很好的结晶质量,将为国内相关器件的研制提供有力支撑。
电力机车电力机车由:机械部分,电气部分和空气管路系统三部分组成。机械部分包括走行部和车体。走行部是承受车辆自重和载重在钢轨上行走的部件,由2轴或3轴转向架以及安装在其上的d簧悬挂装置、基础制动装置、轮对和轴箱、齿轮传动装置和牵引电动机悬挂装置组成。车体用来安放各种设备,同时也是乘务人员的工作场所,由底架、司机室、台架、侧墙和车顶等部分组成。司机室设在车体的两端,有走廊相通。司机室内安装控制设备,如司机控制器、制动阀、按钮开关、监测仪表和信号灯等。两司机室之间用来安装机车的全部主要设备,有时划分成小室,分别安装辅助机组、开关设备、换流装置以及牵引变压器等。部分电气设备如受电弓、主断路器和避雷器等则安装在车顶上。车钩缓冲装置安装在车体底架的两端牵引梁上。车体和设备的重量通过车体支承装置传递到转向架上,车体支承装置并起传递牵引力与制动力的作用。电气部分机车上的各种电气设备及其连接导线。包括主电路、辅助电路、控制电路以及它们的保护系统。①主电路:电力机车的最重要组成部分。它决定机车的基本性能,由牵引电动机以及与之相连接的电气设备和导线共同组成。在主电路中流过全部的牵引负载电流,其电压为牵引电动机的工作电压,或者接触网的网压,所以主电路是电力机车上的高电压大电流的动力回路。它将接触网上的电能转变成列车牵引所需的牵引动力。②辅助电路:供电给电力机车上的各种辅助电机的电气回路。辅助电机驱动多种辅助机械设备,如冷却牵引电动机和制动电阻用的通风机,供给各种气动器械所需压缩空气的压缩机等。辅助电机可以是直流的,也可以是异步的。③控制电路:由司机控制器和控制电器的传动线圈和联锁触头等组成的低压小功率电路。控制电路的作用是使机车主电路和辅助电路中的各种电器按照一定的程序动作。这样,电力机车即可按照司机的意图运行。④保护系统:保证上述各种电路的设施。空气管路系统按用途可分为:①供给机车和车辆制动所需压缩空气的空气制动气路系统。②供给机车电气设备所需压缩空气的控制气路系统。③供给机车撒砂装置、风嗽叭和刮雨器等辅助装置所需压缩空气的辅助气路系统。作用:是风压的通道,为机车受电弓上升,机车制动,机车散热提供风源内燃机电车基本结构 内燃机车由柴油机、传动装置、辅助装置、车体走行部(包括车架、车体、转向架等)、制动装置和控制设备等组成。柴油机内燃机车的动力装置,又称压燃式内燃机。主要结构特点包括汽缸数、汽缸排列形式、汽缸直径、活塞冲程、增压与否等。现代机车用的柴油机都配装废气涡轮增压器,以利用柴油机废气推动涡轮压气机,把提高了压力的空气经中间冷却器冷却后送入柴油机进气管,从而大幅度提高了柴油机功率和热效率。柴油机工作有四冲程和二冲程两种方式,同等转速的四冲程机的热效率一般高于二冲程,所以大部分采用四冲程。从转速来看,分为高速机、中速机和低速机。为满足各种功率的需要,生产有相同汽缸直径和活塞的各种缸数的产品。功率较小用6缸、8缸直列或8缸V型,功率较大用12、16、18和20缸V型,其中以12、16缸的最为常用。传动装置为使柴油机的功率传到动轴上能符合机车牵引要求而在两者之间设置的媒介装置。柴油机扭矩—转速特性和机车牵引力—速度特性完全不同,不能用柴油机来直接驱动机车动轮:柴油机有一个最低转速,低于这个转速就不能工作,柴油机因此无法启动机车;柴油机功率基本上与转速成正比,只有在最高转速下才能达到最大功率值,而机车运行的速度经常变化,使柴油机功率得不到充分利用;柴油机不能逆转,机车也就无法换向。所以,内燃机车必须加装传动装置来满足机车牵引要求。常用的传动方式有机械传动、液力传动和电力传动。液力传动箱、车轴齿轮箱、万向轴等组成。液力变扭器(又称变矩器)是液力传动机车最重要的传动元件,由泵轮、涡轮、导向轮组成。泵轮和柴油机曲轴相连,泵轮叶片带动工作液体使其获得能量,并在涡轮叶片流道内流动中将能量传给涡轮叶片,由涡轮轴输出机械能做功,通过万向轴、车轴齿轮箱将柴油机功率传给机车动轮;工作液体从涡轮叶片流出后,经导向轮叶片的引导,又重新返回泵轮。液力传动机车(图2) *** 纵简单、可靠,特别适用于多风沙和多雨的地带。电力传动分为三种:(a)直流电力传动装置。牵引发电机和电动机均为直流电机,发动机带动直流牵引发电机,将直流电直接供各牵引直流电动机驱动机车动轮。(b)交—直流电力传动装置。发动机带动三相交流同步发电机,发出的三相交流电经过大功率半导体整流装置变为直流电,供给直流牵引电动机驱动机车动轮。(c)变—直—交流电力传动装置。发动机带动三相同步交流牵引发电机,发出的交流电通过整流器到达直流中间回路,中间回路中恒定的直流电压通过逆变器调节其振幅和频率,再将直流电逆变成三相变频调压交流电压,并供给三相异步牵引电动机驱动机车动轮。电力传动机车的应用最为广泛。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)