半导体材料为基础,利用光照产生电子-空穴对,在附结上可以产生光电流和光电压的现象(光伏效应),从而实现太阳能光电转换的目的。通常所用的半导体材料为硅、锗和三-五族化合物等。
在纯净的硅晶体中掺入五价元素(如磷、砷、锑等),使之取代晶格中硅原子的位置,就形成了N型半导体。这类杂质提供了带负电(Negative)的电子载流子,称他们为是主杂质或n型杂质。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
采用高科技光电转换材料---太阳能硅晶片,可以在任何生活光源下聚集不同角度的光线,进行电力转换并实现为手机充电,可彻底摆脱充电器。不仅在太阳光照射下,在房间里的灯光、室内自然光、甚至烛光下都能实现充电。
对。根据查询相关公开信息显示,二极管三极管光敏二极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优点。制造所用材料都是硅,硅的导电性介于导体和绝缘体之间,称为半导体。光电转换器件主要是利用光电效应将光信号转换成电信号。太阳能电池对光电转换材料的要求是转换效率高、能制成大面积的器件,以便更好地吸收太阳光。自光电效应发现至今,光电转换器件获得了突飞猛进的发展,目前各种光电转换器件已广泛地应用在各行各业。
光电倍增器是把微弱的输入转换为电子,并使电子获得倍增的电真空器件。当光信号强度发生变化时,阴极发射的光电子数目相应变化,由于各倍增极的倍增因子基本上保持常数,所以阳极电流亦随光信号的变化而变化,此即光电倍增管的简单工作过程。
将相同的材料或两种不同的半导体材料做成PN结电池结构,当太阳光照射到PN结电池结构材料表面时,通过PN结将太阳能转换为电能。太阳能电池对光电转换材料的要求是转换效率高、能制成大面积的器件,以便更好地吸收太阳光。
由此可见,光电倍增管的性能主要由光阴极、倍增极及极间电压决定。光电阴极受强光照射后,由于发射电子的速率很高,光电阴极内部来不及重新补充电子,因此使光电倍增管的灵敏度下降。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)