这种类型的传感器在气体传感器中约占60%,根据其机理分为电导型和非电导型,电导型中又分为表面型和容积控制型。
(1)SnO2半导体是典型的表面型气敏元件,其传感原理是SnO2为n型半导体材料。当施加电压时,半导体材科温度升高,被吸附的氧接受了半导体中的电子形成了O2或O2原性气体H2、CO、CH4存在时,使半导体表面电阻下降,电导上升,电导变化与气体浓度成比倒。NiO为p型半导体,氧化性气体使电导下降,对O2敏感。ZnO半导体传感器也属于此种类型。
a.电导型的传感器元件分为表面敏感型和容积控制型,表面敏感型传感材料为SnO2+Pd、ZnO十Pt、AgO、V2O5、金属酞青、Pt—SnO2。表面敏感型气体传感器可检测气体为各种可燃性气体CO、NO2、氟利昂。传感材料Pt—SnO2的气体传感器可检测气体为可燃性气体CO、H2、CH4。
b.容积控制型传感材料为Fe2O8和TiO2、CO-MgO—SnO2体传感器可检测气体为各种可燃性气体CO、NO2、氟利昂,传感材料Pt—SnO2。
容积控制型半导体气体传感器可检测气体为液化石油气、酒精、空燃比控制、燃烧炉气尾气。
(2)容积控制型的是晶格缺陷变化导致电导率变化,电导变化与气体浓度成比例关系。
Fe2O8、TiO2属于此种,对可燃性气体敏感。
(3)热线性传感器,是利用热导率变化的半导体传感器,又称热线性半导体传感器,是在Pt丝线圈上涂敷SnO2层,Pt丝除起加热作用外,还有检测温度变化的功能。施加电压半导体变热,表面吸氧,使自由电子浓度下降,可燃性气体存在时,由于燃烧耗掉氧自由电子浓度增大,导热率随自由电子浓度增加而增大,散热率相应增高,使Pt丝温度下降,阻值减小,Pt丝阻值变化与气体浓度为线性关系。
这种传感器体积小、稳定、抗毒,可检测低浓度气体,在可燃气体检测中有重要作用。
(4)非电导型的FET场效应晶体管气体传感器,Pd—FET.场效应晶体管传感器,利用Pd吸收Hz并扩散达到半导体Si和Pd的界面,减少Pd的功函,这种对H2、CO敏感。非电导型FET场效应晶体管气体传感器体积小,便于集成化,多功能,是具有发展前途的气体传感器。[2]
固体电解质气体传感器
这种传感器元件为离子对固体电解质隔膜传导,称为电化学池,分为阳离子传导和阴离子传导,是选择性强的传感器,研究较多达到实用化的是氧化锆固体电解质传感器,其机理是利用隔膜两侧两个电池之间的电位差等于浓差电池的电势。稳定的氧化铬固体电解质传感器已成功地应用于钢水中氧的测定和发动机空燃比成分测量等。
为弥补固体电解质导电的不足,近几年来在固态电解质上镀一层气敏膜,把围周环境中存在的气体分子数量和介质中可移动的粒子数量联系起来。
接触燃烧式气体传感器
接触燃烧式传感器适用于可燃性气H2、CO、CH4的检测。可燃气体接触表面催化剂
Pt、Pd时燃烧、破热,燃烧热与气体浓富有关。这类传感器的应用面广、体积小、结构简单、稳定性好,缺点是选择性差。[2]
电化学气体传感器
电化学方式的气体传感器常用的有两种:
(1)恒电位电解式传感器
是将被测气体在特定电场下电离,由流经的电解电流测出气体浓度,这种传感器灵敏度高,改变电位可选择的检洌气体,对毒性气体检测有重要作用。
(2)原电池式气体传感器
在KOH电解质溶液中,Pt—Pb或Ag—Pb电极构成电池,已成功用于检测O2,其灵敏度高,缺点是透水逸散吸潮,电极易中毒。[2]
光学气体传感器
(1)直接吸收式气体传感器
红外线气体传感器是典型的吸收式光学气体传感器,是根据气体分别具有各自固有的光谱吸收谱检测气体成分,非分散红外吸收光谱对SO2、CO、CO2、NO等气体具有较高的灵敏度。
另外紫外吸收、非分散紫外线吸收、相关分光、二次导数、自调制光吸收法对NO、NO2、SO2、烃类(CH4)等气体具有较高的灵敏度。
(2)光反应气体传感器
光反应气体传感器是利用气体反应产生色变引起光强度吸收等光学特性改变,传感元件是理想的,但是气体光感变化受到限制,传感器的自由度小。
(3)气体光学特性的新传感器
光导纤维温度传感器为这种类型,在光纤顶端涂敷触媒与气体反应、发热。温度改变,导致光纤温度改变。利用光纤测温已达到实用化程度,检测气体也是成功的。
此外,利用其它物理量变化测量气体成分的传感器在不断开发,如声表面波传感器检测SO2、NO2、H2S、NH3、H2等气体也有较高的灵敏度。
继电器逻辑控制,PLC程序控制。PLC控制系统是在传统的顺序控制器的基础上引入了微电子技术、计算机技术、自动控制技术和通讯技术而形成的一代新型工业控制装置,目的是用来取代继电器、执行逻辑、记时、计数等顺序控制功能,建立柔性的远程控制系统。具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。
PLC内部工作方式一般是采用循环扫描工作方式,在一些大、中型的PLC中增加了中断工作方式。当用户将用户程序调试完成后,通过编程器将其程序写入PLC存储器中,同时将现场的输入信号和被控制的执行元件相应的连接在输入模块的输入端和输出模块的输出端,接着将PLC工作方式选择为运行工作方式,后面的工作就由PLC根据用户程序去完成,PLC执行过程框图。PLC在工作过程中,主要完成六个模块的处理。
继电器控制系统一般由主令电器、接触器、继电器和导线等部分组成,可以把继电器看做电磁开关。给线圈加一个电压,产生一个磁场,该磁场使继电器的触点闭合。触点被看做是开关,它们允许电流流过,从而将主电路闭合。
在继电器控制系统中,要完成一个控制任务,需由导线将各种输入设备(按钮、控制开关、限位开关、传感器等)与若干中间继电器、时间继电器、计数继电器等组成的具有一定逻辑的控制电路相连接,然后通过输出设备(接触网、电磁阀等执行元件)去控制被控对象动作或运行,这种控制系统称做接线控制系统,所实现的逻辑称为布线逻辑,即输入对输出的控制作用是通过“接线程序”来实现的。在这种控制系统中,控制要求的变更或修改必须通过改变控制电路的硬接线来完成。因此,虽然其结构简单易懂,在工业控制领域中被长期广泛使用,但设备体积大、动作速度慢、功能单一、接线复杂、通用性和灵活性差,已愈来愈不能满足现代生产中生产过程及工艺复杂多变的。
PLC的梯形图与传统继电器控制系统非常相似,信号的输入/输出形式及控制功能基本上也是相同的;
它们的不同之处主要表现在:
(1)控制逻辑——继电器控制逻辑采用硬接线逻辑,利用继电器机械触点的串联或并联,及时间继电器等组合成控制逻辑,其接线多而复杂、体积大、功耗大、故障率高,灵活性和扩展性很差。而PLC采用存储器逻辑,其控制逻辑以程序方式存储在内存中,灵活性和扩展性都很好。
(2)工作方式——继电器控制线路中各继电器同时都处于受控状态,属于并行工作方式。而PLC的控制逻辑中,各内部器件都处于周期性循环扫描过程中,各种逻辑、数值输出的结果都是按照在程序中的前后顺序计算得出的,所以属于串行工作方式。
(3)可靠性和可维护性——继电器控制逻辑使用了大量的机械触点,连线也多,可靠性和可维护性差。而PLC采用微电子技术,大量的开关动作由无触点的半导体电路来完成,PLC还配有自检和监督功能,可靠性和可维护性好。
(4)控制速度——继电器控制逻辑依靠触点的机械动作实现控制,工作频率低,且机械触点还会出现抖动问题。而PLC是由程序指令控制半导体电路来实现控制,属于无触点控制,速度极快,且不会出现抖动。
(5)定时控制——继电器控制逻辑利用时间继电器进行时间控制。时间继电器存在定时精度不高,定时范围窄,且易受环境湿度和温度变化的影响,调整时间困难等问题。PLC使用半导体集成电路做定时器时基脉冲由晶振产生,精度相当高,且定时时间不受环境的影响,定时范围广,调整时间方便。
(6)设计和施工——使用继电器控制逻辑完成一项工程,其设计、施工、调试必须依次进行,周期长、而且修改困难。而用PLC完成一项控制工程,在系统设计完成后,现场施工和控制逻辑的设计可以同时进行,周期短,且调试和修改都很方便。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)