1.矿物的密度和相对密度
矿物单位体积的质量称作矿物的密度(density),也称真密度,单位为g/cm3。密度值可依据晶胞体积、晶胞内所含原子种类及其数量计算得出。矿物的相对密度(relative density)是指矿物在空气中的质量与4℃时同体积水的质量之比,量纲为一。由于4℃时水的密度是1g/cm3,所以矿物相对密度与真密度数值相等。
实践中相对密度的测定常常忽略水在4℃时和室温下的差,其方法是:用极细线将待测矿物样品钓挂于天平钩上,称出其质量(W1),然后把悬着的样品放入盛满水的容量瓶,求得排出水的质量(W2)。相对密度D=W1/W2。
矿物的相对密度分为轻、中、重3个级别:
轻级 相对密度小于2.5。石墨(2.09~2.23)、石盐(2.1~2.2)和石膏(2.3)等属轻矿物。
中等 相对密度在2.5~4之间。绝大多数非金属矿物如石英(2.65)、萤石(3.18)和金刚石(3.52)等具中等密度。
重级 相对密度大于4。自然金属元素和多数硫化物类矿物如自然金(15.6~19.3)、黄铁矿(4.9~5.2)等属重矿物。
矿物的相对密度与其组成元素的相对原子质量、原子或离子的半径及结构的紧密程度有关。在等型结构的矿物中,一般来说,组成元素的相对原子质量越大而原子或离子半径越小,矿物的相对密度越大;但通常原子或离子的相对原子质量与半径正相关,矿物的相对密度变化趋势便依优势因素而异。在同质多象各变体间,配位数较高、质点排列紧密者,其相对密度较大。当矿物在较高温结晶时,形成配位数较低的晶体结构,其相对密度较小;而当矿物在较高压力下结晶时,形成配位数较高的晶格,结构堆积较为紧密,其相对密度较大。
矿物肉眼鉴定时,可用掂量比较的方法进行粗略的密度分级。
相对密度是矿物分选、鉴定的主要依据之一,它在地质作用判别和矿物标型找矿以及矿物材料开发应用方面均有重要意义。
2.矿物的磁性
矿物的磁性(magnetism)是指矿物在外磁场作用下被磁化而表现出被外磁场吸引、排斥或对外界产生磁场的性质。矿物磁性的大小以其单位体积的磁化强度与外磁场强度之比即磁化率来表示。
从本质上讲,矿物的磁性是由其所有原子或离子中核外电子的自旋磁矩和电子绕核旋转形成的电子轨道磁矩的总和所决定的。在外磁场作用下,如果所有小磁场全部定向排列,矿物获得较高的磁化率,表现出强的磁性;如果矿物内只有少数小磁场作定向排列,表明磁化率较低,显示弱磁性。强磁性包括铁磁性(ferromagnetism)和亚铁磁性(ferrimagnetism),弱磁性包括反铁磁性(antiferromagnetism)、顺磁性(paramagnetism)和抗磁性(亦称逆磁性、反磁性,diamagnetism)。其中,抗磁性矿物(自然银、方铅矿、金刚石、方解石、萤石等)的磁化方向与外磁场方向相反,在外磁场中略被排斥;其他矿物的磁化方向都与外磁场相同,在外磁场中被吸引,而铁磁性矿物(自然铁等)和亚铁磁性矿物(磁铁矿、磁黄铁矿等)在外磁场中既能被吸引,又能吸引铁质,合称为磁性矿物;反铁磁性矿物(自然铂、赤铁矿、方锰矿等)和顺磁性矿物(黑钨矿、普通辉石、普通角闪石、黑云母等)只能被大强度的外磁场如电磁铁所吸引,合称电磁性矿物。磁性和电磁性矿物都含有具不成对电子的过渡型离子,且不成对电子数与矿物磁性强度正相关;由惰性气体型离子和铜型离子组成的矿物都呈抗磁性。
矿物肉眼鉴定时,常用永久磁铁或磁化小刀与矿物相互作用,将矿物粗略地分为以下3级:
强磁性矿物(stronger magnetism mineral)较大颗粒或块体能被永久磁铁所吸引的矿物,如磁铁矿。
弱磁性矿物(weaker magnetism mineral)粉末才表现出能被永久磁铁所吸引的矿物,如铬铁矿。
无磁性矿物(non-magnetism mineral)粉末也不能被永久磁铁吸引的矿物,如黄铁矿。
磁性是矿物十分重要的物理性质参数,它不仅是许多矿物鉴定、分选以及磁法找矿的重要依据,还是古陆和岩石圈演化、交代蚀变作用和地球表层系统环境变化的重要依据。
3.矿物的电学性质
(1)导电性和介电性
矿物的导电性(electric conductivity)是表征矿物传导电流能力的性质,以电阻率表征。导电能力的强弱主要取决于化学键类型。一般地说,具有金属键的矿物或多或少会表现出导电性。一些自然元素矿物和金属硫化物矿物,如自然金、自然铜、石墨、辉铜矿、镍黄铁矿等,由于其结构中存在大量自由电子而成为电的良导体。
矿物的介电性(dielectricity)是指不导电或导电性极弱的矿物,在外电场作用下被极化而产生感应电荷的性质,常用介电常数(即电容率,dielectric constant)来表征。介电常数的大小与组成矿物的阴阳离子类型、半径、被极化的难易程度及内部结构有关。具离子键或共价键的非金属矿物,如多数氧化物、含氧盐和卤化物矿物(石英、石棉、白云母、石膏等)介电常数较大,属非导体(non conductor)或绝缘体(insulator)。
(2)热电性
有些矿物常温下呈弱导电性,温度升高时导电性增强,为半导体(semiconductor),如黄铁矿、闪锌矿等。对半导体矿物不均匀加热时,其冷、热端产生温差电动势(也称热电动势)。半导体矿物这种由热差而产生电势的性质称为热电性(thermoelectricity),以热电系数(thermoelectric coefficient)(a,单位μV/℃)表示。
矿物的热电性主要受其结构中杂质元素的种类、赋存状态和晶格缺陷(如空穴、自由电子等)等因素的影响,而后者则与其形成介质的物理化学条件密切相关,因此矿物热电性的研究能够揭示其成因信息,成为许多矿床规模大小、剥蚀程度和深部远景判别的重要依据。
(3)压电性和焦电性
当矿物受到定向压应力或张应力作用时,垂直于应力的两侧表面产生等量相反电荷,应力方向反转时,两侧表面的电荷易号,这种性质称为矿物的压电性(piezoelectricity)。具有压电性的矿物在定向压应力或张应力交替作用下将产生交变电场,这种现象称压电效应(piezoelectric effect)。若将这类矿物晶体置于交变电场中,它便发生机械伸缩,称电致伸缩(electrostriction),即反压电效应。
矿物的焦电性(pyroelectricity)是指某些电介质矿物晶体被加热或冷却时在特定结晶学方向的两端表面产生相反电荷的性质。
压电性和焦电性是晶体因应力作用或热胀冷缩,晶格发生变形,导致正、负电荷的中心偏离重合位置,引起晶体极化而荷电的现象。因此,压电性和焦电性都只见于无对称中心而有极轴(两极无对称关系)的极性介电质晶体中。焦电性晶体包括对称型为L1,L2,L3,L4,L6,P,L22P,L44P,L33P,L66P的10个晶类。除对称型为3L44L36L2的晶类外,其他所有无对称心的介电质晶体都具压电性(共20个晶类)。显然,具有焦电性的晶体必有压电性,反之则未必。例如,电气石(3 m点群)、异极矿和方硼石(均为mm2点群)既具焦电性,又具压电性;而石英(32点群)则仅有压电性。
压电性和焦电性除了可用于判断矿物晶体的真实对称外,压电性还广泛用于钟表、无线电、雷达和超声波探测技术,焦电性则广泛用于红外探测和热电摄像。
4.矿物的放射性等性质
除了上述的物理性质外,矿物的放射性、吸水性、可塑性、膨胀性、挥发性、导热性,以及嗅觉、味觉、触觉、熔点等性质,在矿物鉴定、核工业和材料工业上的利用有极其重要的意义,将在涉及的矿物中加以介绍。
思考题及习题
1)矿物呈色的机制是什么?试述矿物致色的四种主要机理。
2)何谓条痕?一般来说,如何鉴定矿物的条痕色?
3)影响矿物透明度的主要因素有哪些?
4)何谓矿物的光泽?光泽分几级?光泽分级的依据是什么?什么是特殊光泽?举出四种特殊光泽并予以表述。
5)从本质上讲,某些矿物能够发光的机理是什么?何谓磷光和荧光?试述热发光的机制及其意义。
6)什么是矿物的解理?它是如何分级的?哪些结晶学方向容易发育解理?如何正确区分解理面与晶面?解理和裂理有何不同?
7)什么叫断口?举出四种常见断口并描述其特征。
8)如何鉴定矿物的硬度?影响矿物硬度的主要因素是什么?写出摩斯硬度计10种标准矿物的名称。指甲、小刀、玻璃、陶瓷各相当于几级摩斯硬度?
9)试述矿物脆性和延展性、d性和挠性的本质。
10)何谓矿物的磁性?如何鉴定矿物的磁性?简要阐述矿物导电性、压电性、焦电性和放射性的概念。
数十亿年以来,太阳光一直激发着地球表面大量存在的半导体矿物产生光电子能量。理解矿物光电子能量调控矿物与微生物协同作用的微观机理,揭示影响地球物质演化、生物进化与环境演变的宏观过程,具有深刻意义,可带来巨大的科学发现和理论发展与突破的新机遇。
在日-地系统中,太阳光能量对地球表面的影响与作用,过去研究较多的是太阳光影响昼夜气温变化与矿物岩石物理风化作用、全球水气环流作用以及生物光合作用等。而暴露在太阳光下地球表面广泛分布的天然矿物,长期受太阳光照射的响应机制,一直未被重视与理解。
北京大学地球与空间科学学院项目团队研究发现,数十亿年以来,太阳光一直激发着地球表面大量存在的金属硫化物和氧化物半导体矿物而产生光电子能量。显然,来源于天然矿物的光电子能量,是自然界中继太阳光子能量和元素价电子能量之后的第三种重要能量形式(图1)。这一发现开辟了矿物光电子能量研究新领域。
矿物光电子——从未被人类认识与
了解的自然界第三种重要能量形式
事实上,太阳光子能量和元素价电子能量属于地球表层系统中两种重要能量形式,共同促进了地球生命起源与演化、地球物质循环以及地球环境演变。太阳光子能量还是生物光合作用的唯一能量来源。但在日-地系统中太阳光子能量如何深刻影响无机矿物一直未被人类认识与了解。
项目团队研究证实,天然氧化物半导体矿物(如金红石)和天然硫化物半导体矿物(如闪锌矿)所拥有的杂质成分和晶格缺陷特征,均具有良好的可见光响应性。天然氧化物和硫化物半导体矿物在太阳光照射下,激发产生的光空穴一旦被地表还原性物质俘获后能有效产生光电子。项目团队在国际上首次提出,自然界中普遍存在的天然半导体矿物可转化太阳能产生光电子能量,矿物光电子与太阳光子和元素价电子共同构成了地球表面主要能量形式。矿物光电子具有较高的还原电位,可实现和加速一般情况下难以发生的化学还原反应。
早期地球表面还原性介质易于产生金属硫化物半导体矿物光电子;现代地表铁锰氧化物矿物与土壤腐殖质体系中,腐植酸有机分子可成为自然条件下半导体矿物光空穴捕获剂,促进光电子/光空穴对的分离形成矿物光电子。自然界中矿物光电子可影响元素价电子以改变元素化合态及其地球化学循环路径。阳光-矿物-光电子-价电子-微生物多元体系之间发生的耦合作用,可调控矿物中变价金属离子的溶出作用与水体中变价重金属离子如Cr(VI)的矿化作用。
地球表层系统中矿物光电子能量的发现,揭示了长期以来一直被忽视的一个重要事实:太阳光不仅作用于地表有机生物,也一直作用于地表无机矿物。太阳光作用于矿物产生的较高能量光电子,不仅存在于地球表面,也同样可能在太阳系中其他类似星球表面发生。认识天然半导体矿物将太阳能转化为化学能或生物质能的微观作用,有助于揭示自然界日光照射下岩石圈、土壤圈、水圈与生物圈交互作用界面上所发生的电子传递与能量转化的机制和过程,深刻理解地球物质循环与地球环境演化乃至地球生命起源进化等重大科学问题。
光电能营养微生物——极有可能
长期存在的微生物能量利用途径
能量代谢是一切生命活动的核心。传统理论认为,地球上微生物生命活动的主要能量来源于太阳光子和元素价电子能量。自然界中微生物也是根据这两种能量代谢途径,被划分为光能营养微生物和化能营养微生物两大类。
项目团队在国际上首次提出微生物新的能量代谢途径—光电能营养微生物。自然界中天然半导体矿物金红石(TiO2)、针铁矿(FeOOH)和闪锌矿(ZnS)等在可见光照射下产生的光电子,可促进以化能自养型微生物氧化亚铁硫杆菌(A. ferrooxidans)和化能异养型微生物粪产碱杆菌(A. faecalis)等非光合作用微生物生物量显著增长1 3个数量级。
在含有天然半导体矿物和土壤微生物的红壤体系中,天然半导体矿物光电子能量可明显改变环境微生物的种群结构,获得矿物光电子能量的粪产碱杆菌在红壤微生物群落中的比例从初始不到5%左右,5天后迅速增加并维持在70%左右,相应的对照实验中,该菌比例却一直维持在8%左右。研究结果还表明,微生物的生长情况与矿物光电子能量和光电子数量密切相关,不同波长光辐照下的微生物生长情况与矿物的光吸收谱相吻合。这一能量利用途径的光能-生物能转化效率为0.13‰ 1.90‰。该新发现揭示了一种极有可能长期存在的微生物能量利用途径,即通过自然界中天然氧化物和硫化物半导体矿物日光催化作用产生的光电子,促进非光合微生物的生长代谢活动(图2)。
这是继人类发现自然界化能微生物获取元素价电子能量和光能微生物获取太阳光子能量之后,新发现的某些微生物可获取天然半导体矿物光电子能量,也是继人类发现化能营养微生物(元素价电子能量)和光能营养微生物(太阳光子能量)之后的第三种营养模式——光电能营养微生物,即矿物光电子能量(表1)。这一发现突破了对于微生物利用能量的现有认识,对微生物能量代谢传统理论的普适性提出了新的挑战,为研究地球早期生命过程中能量来源问题提供了新思路。
光燃料电池(LFC)——
基于半导体矿物与微生物
协同作用理论的新型能量转换系统
地球物质的循环与地球环境的演变等宏观过程,均与各种微观的电子转移过程密不可分。矿物与微生物之间电子转移,更是地球表层系统中最为重要的地球化学动力学机制之一。以往认为矿物与微生物间电子转移(即交互作用),主要包括微生物形成矿物、分解矿物和转化矿物3种作用方式。
项目团队研究发现矿物与微生物之间存在协同作用新方式,矿物与微生物间存在广泛的电子传导机制。矿物与微生物协同作用拥有3种途径。首先,矿物可直接提供微生物光电子能量生长代谢。如微生物燃料电池(Microbe Fuel Cell, MFC)阳极半导体矿物金红石、闪锌矿和针铁矿光电子,可促进粪产碱杆菌(A. faecalis)在MFC阴极固体电极表面的附着生长。其次,通过矿物光电子还原Fe3+形成Fe2+提供微生物价电子能量生长代谢,利用Fe2+/Fe3+循环实现矿物与微生物协同作用。如MFC阳极金红石和闪锌矿光电子还原阴极Fe3+为Fe2+而不断循环再生,MFC阴极中氧化亚铁硫杆菌(A. ferrooxidans)获得Fe2+价电子生长,实现太阳能 光电能 化学能 生物质能的能量传递与转化过程。第三,矿物可提升微生物胞外电子能量,实现半导体矿物与微生物协同作用。如MFC阳极微生物群落可直接传递价电子至电极,通过外电路再传递至金红石构成的阴极,虽然价电子在传递过程中能量有所降低,但阴极金红石的光催化作用可提升电子能量,从而提高了电子在微生物与矿物之间的传递效率,降低了MFC体系整体内阻。
自然界中半导体矿物与微生物协同作用的实质,是光电子的传递和价电子的传递在矿物原子-微生物分子、矿物晶胞-微生物细胞以及矿物组合-微生物群落不同层次上,统一为一个更长的电子传递链,是不同反应界面上光能-化学能-电能-生物能之间的能量传递与转化。矿物与微生物这一协同作用机制,揭示了自然界电子传递方式具有多样性,为研制新型能量转换系统提供了原理与模型。
项目团队以半导体矿物与微生物协同作用理论为基础,构建了一个基于双室电化学装置的实验体系,以半导体矿物端元作为阳极,微生物端元作为阴极,通过外电路构成回路,将微生物催化作用与半导体矿物光催化作用有机结合,创新性地提出了光燃料电池(Light Fuel Cell, LFC)新原理(图3)。在LFC体系中通过半导体矿物光催化作用引入太阳光能,提升了电子能量,克服了单一的微生物体系中反应的能量势垒,新体系中极化内阻可降低1个数量级,电子转移速率可提升2 3倍。新提出的LFC体系,发展并优化了传统MFC的理论和方法,提高了产能效率,降低了体系能耗,具有广阔的开发应用前景。
数十亿年以来,太阳光一直激发着地球表面大量存在的半导体矿物产生光电子能量,不仅在地球早期生命起源与演化中起到重要作用,而且在地球物质循环与地球环境演变过程中发挥独特作用。地球多个圈层之间发生的不同时间和空间尺度上的交互作用,很大程度上控制着岩石圈演化、水气循环与生物演变过程,如今看来不能忽视太阳光直接或间接参与这一交互作用过程。当前,深刻理解矿物光电子能量调控矿物与微生物协同作用的微观机理,及其影响地球物质演化、生物进化与环境演变的宏观过程,理应成为地球科学中新的研究方向,蕴含着巨大的科学发现和理论发展与突破的机遇。
致谢:感谢国家973计划项目“光电子调控矿物与微生物协同作用机制及其环境效应研究”(项目编号:2014CB846000)的支持。
本文刊登于IEEE Spectrum中文版《 科技 纵览》2018年5月刊。
一、概念不同
1、导体
导体(conductor)是指电阻率很小且易于传导电流的物质。导体中存在大量可自由移动的带电粒子称为载流子。在外电场作用下,载流子作定向运动,形成明显的电流。
2、半导体
半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。
二、分类不同
1、导体
1)第一类导体
金属是最常见的一类导体。金属中的原子核和内层电子构成原子实,规则地排列成点阵,而外层的价电子容易挣脱原子核的束缚而成为自由电子,它们构成导电的载流子。
2)第二类导体
电解质的溶液或称为电解液的熔融电解质也是导体,其载流子是正负离子。实验发现,大部分纯液体虽然也能离解,但离解程度很小,因而不是导体。
3)其他导电介质
电的绝缘体又称为电介质。它们的电阻率极高,比金属的电阻率大1014倍以上。绝缘体在某些外界条件(如加热、加高压等)影响下,会被“击穿”,而转化为导体。绝缘体或电介质的主要电学性质反映在电导、极化、损耗和击穿等过程中。
2、半导体
半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物)。
以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
三、特性不同
1、导体
1)热敏特性
半导体的电阻率随温度变化会发生明显地改变。
2)光敏特性
半导体的电阻率对光的变化十分敏感。有光照时、电阻率很小;无光照时,电阻率很大。
3)掺杂特性
在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。
2、半导体
半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。
1)在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。
2)在光照和热辐射条件下,其导电性有明显的变化。
参考资料来源:百度百科-半导体
参考资料来源:百度百科-导体
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)