氮化碳空间结构

氮化碳空间结构,第1张

氮化碳光触媒(g-C3N4) g-C3N4是一种典型的聚合物半导体,其结构中的CN原子以sp2杂化形成高度离域的π共轭体系。

其中Npz轨道组成g-C3N4的最高占据分子轨道(HOMO),Cpz轨道组成最低未占据分子轨道(LUMO),禁带宽度~2.7 eV,可以吸收太阳光谱中波长小于475的蓝紫光。

石墨相氮化碳(Graphitic Carbon Nitride,g-C3N4)是一种具有六方晶系结构的材料,其晶体结构类似于石墨。因此,它不属于非晶态材料。

在g-C3N4中,每个C和N原子都与三个邻近原子形成共价键,并且这些原子排列成了平面上的六元环结构。这种六元环结构可以沿着c轴方向堆叠形成多层片状结构,在其中间存在着大量的π-π堆积作用和范德华力。这使得g-C3N4表现出了良好的导电性、机械强度和稳定性等特点。

总之,虽然g-C3N4具有类似于非晶态材料的某些物理特性(如高比表面积、可调控孔径大小等),但它本质上仍然是一种拥有规则晶格结构的半导体材料。

在元素周期表中金属和非金属的分界处,可以找到半导体材料,如硅、锗、镓等

另外还有半导体的特性:

半导体是导电能力介于导体和绝缘体之间的物质。它的重要特性表现在以下几个方面:

(1)热敏性 半导体材料的电阻率与温度有密切的关系。温度升高,半导体的电阻率会明显变小。例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半。

(2)光电特性 很多半导体材料对光十分敏感,无光照时,不易导电;受到光照时,就变的容易导电了。例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧。半导体受光照后电阻明显变小的现象称为“光导电”。利用光导电特性制作的光电器件还有光电二极管和光电三极管等。

近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能。目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管。

另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源。

(3)搀杂特性 纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化。例如,纯硅的电阻率为214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米。因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9150072.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存