半导体有哪些好的特点?

半导体有哪些好的特点?,第1张

 半导体五大特性∶电阻率特性,导电特性,光电特性,负的电阻率温度特性,整流特性。 ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。 ★在光照和热辐射条件下,其导电性有明显的变化。 晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。 自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。 空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。 本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。 载流子:运载电荷的粒子称为载流子。 导体电的特点:导体导电只有一种载流子,即自由电子导电。 本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。 本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。 复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。 动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。 载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。当温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多(即载流子的浓度升高),导电性能增强;当温度降低,则载流子的浓度降低,导电性能变差。 结论:本征半导体的导电性能与温度有关。半导体材料性能对温度的敏感性,可制作热敏和光敏器件,又造成半导体器件温度稳定性差的原因。 杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。 N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。 多数载流子:N型半导体中,自由电子的浓度大于空穴的浓度,称为多数载流子,简称多子。 少数载流子:N型半导体中,空穴为少数载流子,简称少子。 施子原子:杂质原子可以提供电子,称施子原子。 N型半导体的导电特性:它是靠自由电子导电,掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。 P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。 多子:P型半导体中,多子为空穴。 少子:P型半导体中,少子为电子。 受主原子:杂质原子中的空位吸收电子,称受主原子。 P型半导体的导电特性:掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。 结论: 多子的浓度决定于杂质浓度。 少子的浓度决定于温度。 PN结的形成:将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成PN结。 PN结的特点:具有单向导电性。 扩散运动:物质总是从浓度高的地方向浓度低的地方运动,这种由于浓度差而产生的运动称为扩散运动。 空间电荷区:扩散到P区的自由电子与空穴复合,而扩散到N区的空穴与自由电子复合,所以在交界面附近多子的浓度下降,P区出现负离子区,N区出现正离子区,它们是不能移动,称为空间电荷区。 电场形成:空间电荷区形成内电场。 空间电荷加宽,内电场增强,其方向由N区指向P区,阻止扩散运动的进行。 漂移运动:在电场力作用下,载流子的运动称漂移运动。 PN结的形成过程:如图所示,将P型半导体与N型半导体制作在同一块硅片上,在无外电场和其它激发作用下,参与扩散运动的多子数目等于参与漂移运动的少子数目,从而达到动态平衡,形成PN结。 PN结的形成过程电位差:空间电荷区具有一定的宽度,形成电位差Uho,电流为零。 耗尽层:绝大部分空间电荷区内自由电子和空穴的数目都非常少,在分析PN结时常忽略载流子的作用,而只考虑离子区的电荷,称耗尽层。 PN结的单向导电性

(1)

硅的主要来源是石英砂(二氧化硅),硅元素和氧元素通过共价键连接在一起。因此需要将氧元素从二氧化硅中分离出来,换句话说就是要将硅还原出来,采用的方法是将二氧化硅和碳元素(可以用煤、焦炭和木屑等)一起在电弧炉中加热至2100°C左右,这时碳就会将硅还原出来。化学反应方程式为:SiO2 (s) + 2C (s) = Si (s) + 2CO (g)(吸热)

(2)

上一步骤中得到的硅中仍有大约2%的杂质,称为冶金级硅,其纯度与半导体工业要求的相差甚远,因此还需要进一步提纯。方法则是在流化床反应器中混合冶金级硅和氯化氢气体,最后得到沸点仅有31°C的三氯化硅。化学反应方程式为:Si (s) + 3HCl (g) = SiHCl3 (g) + H2 (g)(放热)

(3)

随后将三氯化硅和氢气的混合物蒸馏后再和加热到1100°C的硅棒一起通过气相沉积反应炉中,从而除去氢气,同时析出固态的硅,击碎后便成为块状多晶硅。这样就可以得到纯度为99.9999999%的硅,换句话说,也就是平均十亿个硅原子中才有一个杂质原子。

(4)

进行到目前为止,半导体硅晶体对于芯片制造来说还是太小,因此需要把块状多晶硅放入坩埚内加热到1440°C以再次熔化 。为了防止硅在高温下被氧化,坩埚会被抽成真空并注入惰性气体氩气。之后用纯度99.7%的钨丝悬挂硅晶种探入熔融硅中,晶体成长时,以2~20转/分钟的转速及3~10毫米/分钟的速率缓慢从熔液中拉出:

探入晶体“种子”

长出了所谓的“肩部”

长出了所谓的“身体”

这样一段时间之后就会得到一根纯度极高的硅晶棒,理论上最大直径可达45厘米,最大长度为3米。

以上所简述的硅晶棒制造方法被称为切克劳斯法(Czochralski process,也称为柴氏长晶法),此种方法因成本较低而被广泛采用,除此之外,还有V-布里奇曼法(Vertikalern Bridgman process)和浮动区法(floating zone process)都可以用来制造单晶硅。

01 本质区别:存储介质存在差异 固态硬盘和机械硬盘本质上都是用于数据存储的DIY硬件,其本质上的区别在于存储介质。所谓存储介质,就是指硬盘内部存储数据的材质。传统的机械硬盘,是以机械磁盘为存储介质,通过磁臂和磁头、磁盘之间的机械构造进行数据存储。NAND闪存固态硬盘则是以NAND闪存,即一种非易失性的存储器,作为存储介质,通过存储器内部的电荷数即cell的通断电进行数据的读取和写入,进而实现数据存储。02 架构区别:机械结构和半导体工艺在内部核心组成,或者说组成架构上,二者也有着相当的区别。机械硬盘的核心其实是以次面、磁头、磁臂等机械结构为主,通过三者之间高速的机械配合实现数据存储,其本质依旧是机械核心。这就使得机械硬盘,有着怕碰、怕摔、不防水等一切机械产品拥有的共同弊端。PCB板集成至于固态硬盘,则是以半导体技术支撑,在单位面积PCB板上,集成了包括主控芯片、闪存颗粒(即存储介质)以及缓存芯片,外加大大小小的控制芯片和核心单元等核心组件,通过通电和放电的形式,将数据存储到闪存介质之中,实现数据的存储。半导体工艺制程,让固态硬盘的内部结构更加稳定,同时拥有着防磕碰、防摔、防水(部分)等突出优势,更能适应负责的工作环境。03 性能区别:百兆和千兆的时代差异基于机械硬盘和固态硬盘,在存储介质、核心架构上的原理性差异,二者在实际应用中的性能差异也是相当明显的。机械硬盘的机械结构存在的性能瓶颈,使得现阶段的机械硬盘的读取性能大多徘徊在100MB/S-200MB/S之间,某些应用了全新技术的高端机械硬盘能够到达300MB/S;至于采用了NAND闪存架构的固态硬盘,则是在性能方面有着明显的优势,普通SATA接口的固态硬盘基础性能能够达到500MB/S以上,至于采用NVMe协议的M.2固态硬盘,最大读取性能则能够达到3000MB/S以上的性能,同时随着接口的升级和协议的扩容,在更先进的PCIE4.0标准下,固态硬盘的最大读取性能已经能够达到5000MB/S。至于固态硬盘,则是以半导体技术支撑,在单位面积PCB板上,集成了包括主控芯片、闪存颗粒(即存储介质)以及缓存芯片,外加大大小小的控制芯片和核心单元等核心组件,通过通电和放电的形式,将数据存储到闪存介质之中,实现数据的存储。半导体工艺制程,让固态硬盘的内部结构更加稳定,同时拥有着防磕碰、防摔、防水(部分)等突出优势,更能适应负责的工作环境。性能差异所以,回想到此前的话题,即机械硬盘和固态硬盘之间的区别,其实是基于二者之间完全不同的内部架构、存储介质以及工作核心,而产生了巨大的性能差异;随着技术的进步,机械结构的弊端会被进一步放大,而固态硬盘半导体结构带来的全面优势,迟早将老旧的机械硬盘淘汰出局,这也是二者的宿命。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9151075.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存