在人类 科技 发展的历程中,每一种新材料的发现,都把人类支配自然的能力提升到一个新的高度,追溯 历史 的长河,无论哪个时期,哪个国家,只要拥有了先进的材料基础,就会引领世界的发展方向。
七十多年前,美国物理学家费曼提出了一个伟大的构想:
“如果有一天,可以按人的意志排列一个个原子,将会产生怎样的奇迹?”
费曼不愧为最伟大的量子力学大师,因为他知道在微观粒子尺度上,物质的物理、化学和生物学特性都会和宏观尺度下的原物质大相径庭。因此,若能重建物质的原子排列方式,就能彻底改变物质的属性,这将对未来的 科技 、工程和医学等领域产生极为深远的影响。
01
碳是一种非常神奇的元素, 它既有一定的金属性(原子失去电子的能力),也有一定的非金属性(原子得到电子的能力),但两种属性都不强,所以碳元素具有“模棱两可”的状态。
这种中性的原子状态,消除了碳原子的化学极性。失去了极性,就有了更多的可能:
碳不是地球上含量最多的元素(排名第十二),但其拥有的化合物种类却是所有元素中最丰富的。
因而地球上绝大多数的重要化合物,都离不开碳的身影,比如 氨基酸 就是以碳元素为基础的碳链,DNA的基本组成单位 脱氧核苷酸 ,也是长长的碳链,所有地球生命都可以叫做碳基生命。
在日常生活中,我们也会常常接触到许多含碳的物质,从较软的石墨到最硬的钻石,尽管组成物质都是碳元素,但是由于 碳原子排列方式 不同,它们展现出的 材质特性 也完全不同。
钻石的产量和价格决定了它并不能走入寻常百姓家。而科学家在分离石墨时发现,它们的碳原子会紧密连接而成二维蜂窝状晶格结构,科学家将这种碳原子结构称为 石墨烯 ,其具有一大堆的神奇特性:
比如发生破损时,只需要用含有碳原子的物质接触,它就能进行自我修复;有超高的透光率,看起来几乎就是透明的;有极高的力学、导电和导热的性能等等。
所有这些优异的特性,都让科学家们垂涎欲滴, 可是即便我们完全清楚这种材料的特性——在微观尺度上有着不同寻常的结构,但想要把它们制造出来,却是一件非常困难的事情。
简单说来,若能从石墨片表面撕下1个碳原子那么厚的薄薄一层,我们就获得了石墨烯。
可是,即便科学家们想尽了各种办法,其中包括氧化还原法、取向附生法、化学气相沉积法等等。但这些方法制造出来的石墨烯,要么是不够均匀,要么就是成本过于高昂。
直到2004 年 ,英国科学家 安德烈·盖姆 和 康斯坦丁·诺沃瑟洛夫 发明了一种非常简单的方法——“机械剥离法”:
就是从高定向热解石墨中剥离出石墨片,然后将石墨片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地重复这样的 *** 作,石墨片越来越薄,最后,再用溶液把胶带溶解掉,得到仅由一层碳原子构成的薄片,这就是石墨烯。
凭借这种简单有效的“撕胶带”方法,两位科学家获得了2010年度的诺贝尔物理学奖 。
但是,这种制取石墨烯的方法依然有缺陷:
理论上使用胶带总是可以把石墨一分为二,可是胶带上的胶也并不总是均匀的,这会导致石墨烯的完整性被破坏,所以这种方法制取的石墨烯通常都是几微米大小的碎片。
看来人类若想在微观状态下获取新型材料,此时仅仅是看到了一丝曙光而已……
不过,值得庆幸的是,如今有一种加工精度已到纳米级的(1原子约为0.1纳米)技术—— “光刻”, 已经发展得非常成熟可靠:
这种方法是将半导体硅材料在 紫外光 的照射作用下,利用 光学 化学反应 和 化学 物理刻蚀 的方法,将细微到纳米级的电路图复刻到硅单晶表面。
经过光刻加工的硅芯片也可以算作是一种特殊材料,因为通过加工精度细微到纳米级的微观结构,可以使硅芯片在通电后可以具备传递、计算和存储等神奇的功能(需要软件的配合)。
但目前有一个难点是,当硅芯片的加工精度突破5纳米后,便已经到达它的物理极限——引发电子的隧穿效应,此时的芯片便会不受控制地产生漏电现象,导致芯片的功耗明显增加。
因此, 除了撕胶带法和光刻技术,我们还需要寻找另外一种制造具备神奇特性新材料的方向 :
“ 比如直接 *** 纵原子得到所需的新结构材质。”
02
实际上,我们对单个原子的 *** 纵早就实现了。1989年9月28日,IBM阿尔马登研究中心的物理科学家、IBM院士 多恩·艾格勒 成为人类 历史 上第一个控制和移动单个原子的人。
当年11月11日, 艾格勒 和他的团队用扫描隧道显微镜 *** 控35个氙原子,拼写出了“I、B、M”三个字母,由此开启了人类 *** 纵原子的新纪元。
扫描隧道显微镜发明于1981年,作为一种扫描探针显微术(分辨率为纳米级)工具,它其实是没有镜片的,靠的是一个针尖和样品之间的隧道电流来测量样品表面。它可以观察和定位单个原子。此外,扫描隧道显微镜的最大贡献是:
在4K(-269.15 )低温的超高真空下可以利用探针尖端精确 *** 纵单个原子:
利用导电探针尖与样品表面的隧穿电流,为探针尖端原子和衬底原子提供可控的相互作用力。
可是,扫描隧道显微镜所观察的材料必须具有一定程度的 导电性 ,这便决定了它的局限性:
“对半导体材料的观测效果要差于导体,而对于绝缘体则根本无法直接观察。”
1985年,物理学家格尔德·宾宁又“魔力上身”,联合IBM公司苏黎世研究中心的 克里斯托夫·格贝尔、斯坦福大学的加尔文·奎特共同 发明出了一种使非导体也可以采用类似扫描探针显微镜观测的机器——原子力显微镜。
这是一种可用来研究包括绝缘体在内的材料表面结构的分析仪器,属于一种接触式的显微镜,它利用探针与样品间的接触力,得到样品的表面形貌。原子力显微镜同样具有诸多优点:
“可以提供真正的三维表面图;不需要对样品作任何特殊处理,在常压下甚至在液体环境下都可以良好工作;可以用来研究生物宏观分子,甚至是活的生物组织。”
那么,把二者相互结合在一起便会产生大于1+1 2的效果,2017年2月13日,IBM的科学家们用扫描隧道显微镜结合原子力显微镜突破了一项重大科研成果:
他们用扫描隧道显微镜的针尖手工“敲打”原子,首次成功合成并捕捉到能稳定存在4天之久的三角烯分子。
长期以来,科学家们一直认为三角烯分子根本无法以晶体形式合成,因为它们会不受控制地聚合。
三角烯是一种由六边形 碳原子 环状构成的分子材料,与石墨烯极为相似,不过和成片状展开的石墨烯不同,三角烯中仅含六个六边形碳环,并呈现出类似于三角形的形状。
由于这种不寻常的排列方式会产生两个不成对的电子,使得三角烯极易被氧化,难以稳定存在。所以三角烯分子自1950年被捷克科学家埃里希·克拉尔首次预测以来,一直未能被人工合成。
因此,为了验证实验是否成功,IBM团队成员对生成物的形状、对称性、磁性等特性进行研究。结果发现,生成物确实呈现出三角形结构,而且能在铜表面稳定存在。另外两个未配对的电子也表现出一种特别的电子自旋现象,使得三角烯在分子水平上呈现出磁性。
那么,自从石墨烯面世后,研究者普遍认为石墨烯是一种抗磁材料——即 石墨烯没有磁性 以及不能被磁化。现在碳原子呈三角烯结构竟然具有非常独特的 磁性性能 。这无疑颠覆了人们的固有认知,甚至可以带动一个改写 历史 的领域兴起——碳基磁性材料的时代来临:
“这意味着碳原子的三角烯结构可以用来构建量子计算机及自旋电子器件等。并且 这一 *** 作结果可进一步带来更多颠覆性的技术,最终目标便是能够制造任意的分子结构。”
03
当然, *** 纵原子这一设想不能只有一种方法,1970年,美国物理学家亚瑟·阿什金发现:
“激光束产生的力可以推动分布在水或者空气中的微小粒子,并且散射的激光也会对微粒产生明显的推力。”
1986年, 阿什金 做了一个实验:
他用一束聚焦的激光来照射粒子,激光的散射光与激光本身组成了一个陷阱,像镊子一样把粒子固定住了,这就是著名的 光镊 ,阿什金也因此被称为“光镊之父”。
在观看了这个实验后,阿什金在贝尔实验室的同事,华裔科学家 朱棣文 大受启发,他立即投入了相关的研究。
朱棣文发现,激光的压力可以让高速运动的原子和分子减速,并且让它们冷却下来。他用来自不同方向的多束激光,把原子控制住。1997年,朱棣文幸运地凭借着激光冷却和捕获原子的方法,先于阿什金获得了诺贝尔物理学奖,成为第五位获得诺奖的华裔科学家。
一直到2018年,已经96岁高龄的阿什金,终于等来了他的诺贝尔奖。他发明的光镊,也是目前最有希望参与活体细胞甚至是基因编辑的技术原理:
“”光镊可以非接触、无损伤地 *** 纵活体物质,并且它产生的压力适合于生物细胞、亚细胞以及原子物理的研究。”
每当我们认为科学的发展已经到了瓶颈的时候,这些可爱的科学家们总会让我们看到新的希望。未来可期!
#2021生机大会#
纳米世界,光也能“吹动”物体。当光照射在物体上,也会对物体产生作用力,就像风吹动帆一样。从儒勒·凡尔纳到阿瑟·C·克拉克,科幻作家们不止一次幻想过运用太阳光的作用力来推动“太阳帆”,驱动飞船在星际中航行。然而,在地球上,太阳光的作用力实在微乎其微,没有人能用阳光来移动一个物体。但是,在11月27日的《自然》杂志上,在美国耶鲁大学从事研究的中国学者发表文章,首次证实在纳米世界里,光真的可以驱动“机器”——由半导体做成的纳米机械。 这项研究,结合了两个最前沿的纳米科学领域,即纳米光子学和纳米力学。“在宏观尺度上,光的力实在太微弱,没有人能感觉到。但是在纳米尺度上,我们发现光具有相当可观的力,足以用来驱动像集成电路上的三极管一样大小的半导体机械装置。”领导此项研究的耶鲁大学电子工程系教授唐红星这样介绍。其实,此前光的力已经被物理学家和生物学家应用于一种叫做“光镊”的技术中,用来 *** 控原子和微小的颗粒。“我们的研究则是把光集成在一块小小的芯片上,使它的强度增加数百万倍,从而用来 *** 控纳米半导体器件。”这篇论文的第一作者、博士后研究员李墨进一步阐释说。 在耶鲁大学的实验室里,两位科学家和来自北京大学的研究生熊驰及合作者们一起,使用最先进的半导体制造技术,在硅芯片上铺设出一条条光的线路,称之为“光导”。当激光器发出的光被接入这样的芯片后,光就可以像电流在导线里一样,沿着铺好的光导线路“流”动。理论预测,在这样的结构中,光会对引导它的导线产生作用力。为了证实这样的预测,他们把一小段只有10微米长的光导悬空,让它可以像吉他弦般产生振动。如果光确实产生力并作用在它上面,那么当光的强度被调制到和光导的振动一致的频率时,共振就会产生。这样的共振就会在透射的光中产生同样频率的一个峰。这正是3位中国科学家经过半年多的实验和计算,最终在他们的测量仪器上看到的令人信服的现象。之后,他们通过大量实验证明,这个作用力的大小和理论预期非常一致。因为光的速度比电流要快得多,所以这种光产生的力预期可以以几十吉赫兹(GHz)的速度驱动纳米机械。 此项研究成果有望引领出新一代半导体芯片技术——用光来取代电。未来运用这种新技术,科学家和工程师们可以实现基于光学和量子原理的高速高效的计算和通信。
纳米概述纳米(符号为nm)是长度单位,原称毫微米,就是10^-9米(10亿分之一米),即10^-6毫米(100万分之一毫米)。如同厘米、分米和米一样,是长度的度量单位。相当于4倍原子大小,比单个细菌的长度还要小。
单个细菌用肉眼是根本看不到的,用显微镜测直径大约是五微米。举个例子来说,假设一根头发的直径是0.05毫米,把它径向平均剖成5万根,每根的厚度大约就是一纳米。也就是说,一纳米大约就是0.000001毫米.纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米技术的发展带动了与纳米相关的很多新兴学科。有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。我国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。十多年来,我国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 对于固体粉末或纤维,当其有一维尺寸小于100nm,即达到纳米尺寸,即可称为所谓纳米材料,对于理想球状颗粒,当比表面积大于60m2/g时,其直径将小于100nm,即达到纳米尺寸。
[编辑本段]纳米技术的含义
所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。
纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。
纳米技术(纳米科技nanotechnology)
纳米技术其实就是一种用单个原子、分子制造物质的技术。
从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。
第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。
所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。
纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。
虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究。
[编辑本段]纳米电子器件的特点
以纳米技术制造的电子器件,其性能大大优于传统的电子器件: . 工作速度快,纳米电子器件的工作速度是硅器件的1000倍,因而可使产品性能大幅度提高。功耗低,纳米电子器件的功耗仅为硅器件的1/1000。信息存储量大,在一张不足巴掌大的5英寸光盘上,至少可以存储30个北京图书馆的全部藏书。体积小、重量轻,可使各类电子产品体积和重量大为减小。纳米材料“脾气怪” 纳米金属颗粒易燃易爆 几个纳米的金属铜颗粒或金属铝颗粒,一遇到空气就会产生激烈的燃烧,发生爆炸。因此,纳米金属颗粒的粉体可用来做成烈性炸药,做成火箭的固体燃料可产生更大的推力。用纳米金属颗粒粉体做催化剂,可以加快化学反应速率,大大提高化工合成的产出率。
纳米金属块体耐压耐拉 将金属纳米颗粒粉体制成块状金属材料,强度比一般金属高十几倍,又可拉伸几十倍。用来制造飞机、汽车、轮船,重量可减小到原来的十分之一。
纳米陶瓷刚柔并济 用纳米陶瓷颗粒粉末制成的纳米陶瓷具有塑性,为陶瓷业带来了一场革命。将纳米陶瓷应用到发动机上,汽车会跑得更快,飞机会飞得更高。
纳米氧化物材料五颜六色 纳米氧化物颗粒在光的照射下或在电场作用下能迅速改变颜色。用它做士兵防护激光q的眼镜再好不过了。将纳米氧化物材料做成广告板,在电、光的作用下,会变得更加绚丽多彩。
纳米半导体材料法力无边 纳米半导体材料可以发出各种颜色的光,可以做成小型的激光光源,还可将吸收的太阳光中的光能变成电能。用它制成的太阳能汽车、太阳能住宅有巨大的环保价值。用纳米半导体做成的各种传感器,可以灵敏地检测温度、湿度和大气成分的变化,在监控汽车尾气和保护大气环境上将得到广泛应用。
纳米药物治病救人 把药物与磁性纳米颗粒相结合,服用后,这些纳米药物颗粒可以自由地在血管和人体组织内运动。再在人体外部施加磁场加以导引,使药物集中到患病的组织中,药物治疗的效果会大大提高。还可利用纳米药物颗粒定向阻断毛细血管,“饿”死癌细胞。纳米颗粒还可用于人体的细胞分离,也可以用来携带DNA治疗基因缺陷症。目前已经用磁性纳米颗粒成功地分离了动物的癌细胞和正常细胞,在治疗人的骨髓疾病的临床实验上获得成功,前途不可限量。
纳米卫星将飞向天空 在纳米尺寸的世界中按照人们的意愿,自由地剪裁、构筑材料,这一技术被称为纳米加工技术。纳米加工技术可以使不同材质的材料集成在一起,它既具有芯片的功能,又可探测到电磁波(包括可见光、红外线和紫外线等)信号,同时还能完成电脑的指令,这就是纳米集成器件。将这种集成器件应用在卫星上,可以使卫星的重量、体积大大减小,发射更容易,成本也更便宜。纳米技术走入百姓生活
9月27日,中国科学院化学所的专家宣布研制成功新型纳米材料———超双疏性界面材料。这种材料具有超疏水性及超疏油性,制成纺织品,不用洗涤,不染油污;用于建筑物表面,防雾、防霜,更免去了人工清洗。专家称:纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”。 随着科学家的一次次努力,“纳米”这个几年前对我们还十分生疏的字眼,眼下却频频出现在我们的视线。 纳米是一个长度单位,1纳米等于十亿分之一米,20纳米相当于1根头发丝的三千分之一。90年代起,各国科学家纷纷投入一场“纳米战”:在0.10至100纳米尺度的空间内,研究电子、原子和分子运动规律和特性。
中国当然不甘人后,1993年,中国科学院北京真空物理实验室 *** 纵原子成功写出“中国”二字,标志着我国开始在国际纳米科技领域占有一席之地,并居于国际科技前沿。
1998年,清华大学范守善小组在国际上首次把氮化镓制成一维纳米晶体。同年,我国科学家成功制备出金刚石纳米粉,被国际刊物誉为:“稻草变黄金———从四氯化碳制成金刚石。”
1999年,北京大学教授薛增泉领导的研究组在世界上首次将单壁碳纳米管组装竖立在金属表面,并组装出世界上最细且性能良好的扫描隧道显微镜用探针。
中科院成会明博士领导的研究组合成出高质量的碳纳米材料,被认定为迄今为止“储氢纳米碳管研究”领域最令人信服的结果。
中科院物理所研究员解思深领导的研究组研制出世界上最细的碳纳米管———直径0.5纳米,已十分接近碳纳米管的理论极限值0.4纳米。这个研究小组,还成功地合成出世界上最长的碳纳米管,创造了“3毫米的世界之最”。
在主题为“纳米”的争夺战中,中国人频频露脸,尤其在碳纳米管合成以及高密度信息存储等领域,中国实力不容小觑。
科学界的努力,使“纳米”不再是冷冰冰的科学词语,它走出实验室,渗透到中国百姓的衣、食、住、行中。 居室环境日益讲究环保。传统的涂料耐洗刷性差,时间不长,墙壁就会变得斑驳陆离。现在有了加入纳米技术的新型油漆,不但耐洗刷性提高了十多倍,而且有机挥发物极低,无毒无害无异味,有效解决了建筑物密封性增强所带来的有害气体不能尽快排出的问题。
人体长期受电磁波、紫外线照射,会导致各种发病率增多或影响正常生育。现在,加入纳米技术的高效防辐射服装———高科技电脑工作装和孕妇装问世了。科技人员将纳米大小的抗辐射物质掺入到纤维中,制成了可阻隔95%以上紫外线或电磁波辐射的“纳米服装”,而且不挥发、不溶水,持久保持防辐射能力。
同样,化纤布料制成的衣服因摩擦容易产生静电,在生产时加入少量的金属纳米微粒,就可以摆脱烦人的静电现象。 白色污染也遭遇到“纳米”的有力挑战。科学家将可降解的淀粉和不可降解的塑料通过特殊研制的设备粉碎至“纳米级”后,进行物理结合。用这种新型原料,可生产出100%降解的农用地膜、一次性餐具、各种包装袋等类似产品。农用地膜经4至5年的大田实验表明:70到90天内,淀粉完全降解为水和二氧化碳,塑料则变成对土壤和空气无害的细小颗粒,并在17个月内同样完全降解为水和二氧化碳。专家评价说,这是彻底解决白色污染的实质性突破。
从电视广播、书刊报章、互联网络,我们一点点认识了“纳米”,“纳米”也悄悄改变着我们。纳米精确新闻 1959年 理论物理学家理查·费伊曼在加州理工学院发表演讲,提出,组装原子或分子是可能的。
1981年 科学家发明研究纳米的重要工具———扫描隧道显微镜,原子、分子世界从此可见。
1990年 首届国际纳米科技会议在美国巴尔的摩举办,纳米技术形式诞生。
1991年 碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是铁的10倍,成为纳米技术研究的热点。 1993年
继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字、1999年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中国科学院北京真空物理实验室 *** 纵原子成功写出“中国”二字。
1997年 美国科学家首次成功地用单电子移动单电子,这种技术可用于研制速度和存储容量比现在提高成千上万倍的量子计算机。同年,美国纽约大学科学发现,DNA可用于建造纳米层次上的机械装置。
1999年 巴西和美国科学家在进行碳纳米管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的“秤”,打破了美国和巴西科学家联合创造的纪录。同年,美国科学家在单个分子上实现有机开关,证实在分子水平上可以发展电子和计算装置。 纳米花边新闻 倾听细菌游弋
美国加利福尼亚州Pasadena市的喷气飞机推进器实验室目前正在研制一种被称为“纳米麦克风”的微型扩音器,据《商业周刊》报道,这种微型传感器可以使科学家倾听到正在游弋的单个细菌的声音,以及细胞体液流动的声音。这种人造纳米麦克风由细微的碳管制成,正是因为构成物体积细小和灵敏度极高,这种麦克风才能够在受到非常小的压力作用下作出反应,使得对其进行监测的研究人员获得相关的声音信息。
利用这种新产品,科学家将可以对其他星球上是否存在生命进行探测,可以探测到生物体内单个细胞的生长发育。这一仪器研制项目已获得美国航空航天局(NASA)的批准,而且NASA还向上述实验室提供了必要的技术支持。
[编辑本段]“纳米水”防强暴
据《人民日报》报道,最近,广州一家公司宣称生产出一种用麦饭石和纳米特殊材料制作而成的“纳米珠”,只要把它放在水里,多脏的水也能喝。长期饮用“纳米水”,可抗疲劳,耐缺氧,甚至“增强女士防匪徒强暴的能力”。据了解,每盒纳米珠要300元,买齐整套设备(一台饮水机、一桶水和十盒纳米珠)则需3800元。76岁的何姓老人在推销员的百般说服下,不但相信纳米水的神奇疗效,还看中了纳米水的销售方式。老人背着家里人一共拿出22万元,买下75套纳米水机套装产品,然后等着每月2万元钱的分红。
广州市工商局东山分局经济检察中队在4月3日查处了该公司,其准备创造科技神话的纳米水根本没有科技鉴定说明,该公司的纳米水套装产品既无生产许可证,也没有产品合格证。
[编辑本段]纳米世界,光也能“吹动”物体
当光照射在物体上,也会对物体产生作用力,就像风吹动帆一样。从儒勒·凡尔纳到阿瑟·C·克拉克,科幻作家们不止一次幻想过运用太阳光的作用力来推动“太阳帆”,驱动飞船在星际中航行。然而,在地球上,太阳光的作用力实在微乎其微,没有人能用阳光来移动一个物体。但是,在11月27日的《自然》杂志上,在美国耶鲁大学从事研究的中国学者发表文章,首次证实在纳米世界里,光真的可以驱动“机器”——由半导体做成的纳米机械。
这项研究,结合了两个最前沿的纳米科学领域,即纳米光子学和纳米力学。“在宏观尺度上,光的力实在太微弱,没有人能感觉到。但是在纳米尺度上,我们发现光具有相当可观的力,足以用来驱动像集成电路上的三极管一样大小的半导体机械装置。”领导此项研究的耶鲁大学电子工程系教授唐红星这样介绍。其实,此前光的力已经被物理学家和生物学家应用于一种叫做“光镊”的技术中,用来 *** 控原子和微小的颗粒。“我们的研究则是把光集成在一块小小的芯片上,使它的强度增加数百万倍,从而用来 *** 控纳米半导体器件。”这篇论文的第一作者、博士后研究员李墨进一步阐释说。
在耶鲁大学的实验室里,两位科学家和来自北京大学的研究生熊驰及合作者们一起,使用最先进的半导体制造技术,在硅芯片上铺设出一条条光的线路,称之为“光导”。当激光器发出的光被接入这样的芯片后,光就可以像电流在导线里一样,沿着铺好的光导线路“流”动。理论预测,在这样的结构中,光会对引导它的导线产生作用力。为了证实这样的预测,他们把一小段只有10微米长的光导悬空,让它可以像吉他弦般产生振动。如果光确实产生力并作用在它上面,那么当光的强度被调制到和光导的振动一致的频率时,共振就会产生。这样的共振就会在透射的光中产生同样频率的一个峰。这正是3位中国科学家经过半年多的实验和计算,最终在他们的测量仪器上看到的令人信服的现象。之后,他们通过大量实验证明,这个作用力的大小和理论预期非常一致。因为光的速度比电流要快得多,所以这种光产生的力预期可以以几十吉赫兹(GHz)的速度驱动纳米机械。
此项研究成果有望引领出新一代半导体芯片技术——用光来取代电。未来运用这种新技术,科学家和工程师们可以实现基于光学和量子原理的高速高效的计算和通信。
[编辑本段]纳米探针在药物筛选中首获应用
英国伦敦纳米技术中心的研究人员研制出一种新型纳米探针,利用该纳米探针可以检测出某种抗生素药物是否能够与细菌结合,从而减弱或破坏细菌对人体的破坏能力,达到治疗疾病的目的。这是科学家第一次将纳米探针运用于药物筛选,相关试验的初步结果已经刊登在最新一期的《自然?纳米技术》杂志上。
人们在用抗生素治病的过程中,引起疾病的细菌很容易产生抗药性,从而使得抗生素失去药效。抗生素的作用原理是与致病细菌的细胞壁结合后破坏细胞壁的结构,使得致病细菌死亡,一旦产生抗药性,细菌的细胞壁结构发生改变,细胞壁变厚,抗生素无法与细胞壁结合。
研究人员在一排纳米探针上覆盖组成细菌细胞壁的蛋白质,一旦抗生素与细胞壁结合,探针的表面重量就会增加,这一表面压力会导致纳米探针发生弯曲。通过对万古霉素药物的研究发现,抗药性细菌的细胞壁硬度是非抗药性细菌的1000倍。所以通过纳米探针探测出各种药物对细菌细胞壁的结构改变,筛选出对致病细菌破坏力最大的抗生素。
纳米金属用途简介
钴(Co)
高密度磁记录材料。利用纳米钴粉记录密度高、矫顽力高(可达119.4KA/m)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。
磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。
吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光——红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。
铜(Cu)
金属和非金属的表面导电涂层处理。纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。
高效催化剂。铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。
导电浆料。用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。
铁(Fe)
高性能磁记录材料。利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。
磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。
吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光——红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。
导磁浆料。利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。
纳米导向剂。一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。
镍(Ni)
磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。
高效催化剂。由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。
高效助燃剂。将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。
导电浆料。电子浆料广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要作用。用镍、铜、铝纳米粉体制成的电子浆料性能优越,有利于线路进一步微细化。
高性能电极材料。用纳米镍粉辅加适当工艺,能制造出具有巨大表面积的电极,可大幅度提高放电效率。
活化烧结添加剂。纳米粉末由于表面积和表面原子所占比例都很大,所以具有高的能量状态,在较低温度下便有强的烧结能力,是一种有效的烧结添加剂,可大幅度降低粉末冶金产品和高温陶瓷产品的烧结温度。
金属和非金属的表面导电涂层处理。由于纳米铝、铜、镍有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。
锌(Zn)
高效催化剂。锌及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)