早在今年上半年,国内已经有传言称,国内正在研发碳基芯片,并已经实现了小批量生产。当时,因为碳基芯片处于萌芽状态,网上认为还需要几年时间才能走出实验室。没有想到,传言属实,在部分领域已经开始运用8寸石墨烯碳基芯片,制作成熟产品。
与传统硅基芯片相比,碳基芯片具有良好的导热性能,并且相同的面积算力更是达到了惊人的10倍以上。考虑到碳基芯片,具有3D叠加性质,未来出现超过硅基芯片100倍性能的手机处理器也不足为奇。
在今年9月之后,华为受限制终止了对外芯片采购。未来想要打开对外采购通道,暂时没有确切的时间表。石墨烯为基础的碳基芯片,已经开始批量生产,发展到了8寸的水平,为未来华为解决逻辑芯片困境埋下了新彩蛋。
目前,华为正在开发光芯片,而国内量子芯片、碳基芯片均在路上。如果碳基芯片率先实现批量生产,并将工艺提升至90纳米,甚至28纳米,那么,将会给华为提供一个弯道超车的机会。
根据现在的数据可以推测出,华为使用90纳米碳基芯片,至少可以达到9纳米的水平。如果未来拥有28纳米碳基芯片,即便不考虑良好的导电、散热、易拓展等性能,也远好于台积电3纳米芯片。
相比华为的芯片供应未来可期,台积电将面临泰山压顶的压力。碳基芯片是外界认为,除了量子芯片之外,最理想的芯片之一。在综合性能上,远远胜过硅基芯片,如今已经实现了8寸批量生产。随着碳基芯片产业的原始资金积累,未来增加研发投资规模,提高产量,以商养商科研循环,必然能够使碳基芯片成为市场主流产品。相反,作为传统半导体的坚定维护者,台积电现有硅基芯片生产制程工艺,已经处于理论性死亡阶段,未来必然会退出半导体舞台。
我们先说说碳基芯片是不是靠谱的。
2020年5月在美国知名杂志《科学》上,北大团队刊登了一篇关于碳基半导体的论文,文中提到了“高密度碳纳米管”的提取和组装方法,业界更是将这一成果称为——碳基半导体进入规模工业化的基础,通俗讲就是利用这个方法提取的碳纳米管,可以用来制取芯片。
目前制取芯片的材料是硅基,而碳纳米管制取的碳基芯片,相比于传统硅基在成本、性能和功耗上更加具有优势。而且碳基芯片最突出的一个地方就是,28纳米制程的碳基芯片与目前主流7纳米硅基芯片的性能相当,所以我们只需用28纳米的光刻机,便可以获得全球最先进EUV光刻机的效果。
这样看来碳基芯片确实是比较靠谱的,中国在碳基半导体的提取技术上,也已经做到了行业顶尖水平。那么台积电这些已经将硅基芯片做到工艺极限的大厂,为什么要用咋们的碳基材料,将行业话语权乖乖交出来呢?
问题不是台积电或者整个芯片行业想不想用,而是他们——必须要面临这一步的选择。而这一切就要从芯片业界的一条至尊定律——摩尔定律说起。1965年美国人戈登摩尔提出了一条芯片定律,遵循这条定律,硅基芯片的性能每隔两年左右就会翻一倍,具体表现在芯片的制程有规律提高。但是硅基芯片进入5纳米、乃至2纳米制程以下后,人类的加工工艺也逼近了极限,所以摩尔定律正在逐渐失去“预言“的作用。
而这正是由于硅基芯片本身的物理性质所限制的,往更小的制程做、芯片中的晶体管更小时,硅基芯片会出现漏电效应和短沟道效应等问题,而用碳基材料来做晶体管,就不用做这么小,不用去逼近工艺极限,就可以获得与硅晶体管同等的性能。所以芯片从业者们要么继续寻求破解的技术,要么就更换制作芯片的材料,这是今后芯片行业必须面对的抉择。
所以碳基芯片的方向是有一定可行性的。要知道数码相机的诞生,打败了胶片大厂柯达,智能手机的出现干掉了翻盖巨头诺基亚,所以我们不能忽视中国芯片行业的任何一次机会。
但除了看到碳基芯片给中国半导体行业,带来的一线生机外呢,还要理性看待碳基芯片存在的技术障碍和研发周期。北大碳纳米管提取团队的带头人彭练矛教授曾表示,该团队的下一步目标是在3年内完成90纳米碳基CMOS先导工艺的开发,性能上相当于28纳米的硅基芯片。也就是说,我们在这几年是要完成90纳米碳基芯片的工艺研发,也就是将90纳米碳基芯片设计出来,其性能相当于28纳米的硅基芯片,相比于目前硅基芯片5纳米的一线水平,我们刚好可以迈入门槛。
其次此次碳纳米管的提取是将碳基半导体技术,从实验室向着产业化应用推进了一大步,但是呢,在完全达到产业化之前,我们还有很长的一段距离要走。碳纳米管的提取仅是完成芯片众多制造步骤中的一小步——芯片材料的提取,后续芯片内部结构的制作步骤还有不少,在电路缩放版图的印刻上我们仍然需要用到光刻机,但对光刻机精度的需求没有像现在这样急迫。即使我们完成了硅基芯片的设计,但整个行业也没有生产制造的能力,而硅基芯片制造技术这一步也是我们必须面对的。
最后碳基芯片产业和生态的建立还需要一定的时间,而今后发展的趋势很可能是和硅基芯片产业链相融合。目前各大厂商在硅集成电路产业投入了巨额资金研发,完善了芯片设计、制造和封装等一系列环节,才有了今天如此成熟的硅基芯片产业链。如果行业最终选择碳基芯片、以及碳基芯片的技术愈发成熟时,产业链和生态的更换,或者因为碳基芯片和硅基芯片有着技术交叉,我们可以进行产业链的融合时,都是需要一个时间周期。
所以我们现在虽然有了领先的碳基半导体技术,在碳基芯片的发展上有一定的先发、主导优势。但是我们仍然要埋头发展整个芯片产业链,更不能沉醉于马上弯道超车的幻想中。短时间内,华为的芯片困境不会改变,中国芯片行业的障碍不会解除。
一种全新的碳基材料——一氧化石墨烯(GMO)由美国威斯康辛大学米尔沃基分校的科学家在日前发现,据电磁流量计获悉,该半导体新材料由碳家族的神奇材料石墨烯合成,有助于碳取代硅,应用于电子设备中。该团队在研究一种混合纳米材料时,无心插柳得到了GMO。起初,他们的研究对象是一种由碳纳米管(将石墨烯卷成圆柱状得到)组成的、表面饰有氧化锡纳米粒子的混合纳米材料,陈俊鸿用这种混合材料制造出了高性能、高效率而廉价的传感器。为了更好地了解这种混合材料的性能,科学家们需要想方设法让石墨烯变身为其“堂兄弟”——能大规模廉价生产的绝缘体氧化石墨烯(GO)。GO由石墨烯不对齐地堆叠而组成。实验中,陈俊鸿和物理学教授马瑞加·加达得兹斯卡在真空中将GO加热以去掉氧。然而,GO层中的碳和氧原子没有被破坏而是变得排列整齐,变成了有序的、自然界并不存在的半导体GMO。该研究团队接下来需要了解什么触发了这种材料的重组以及什么环境会破坏GMO的形成。威斯康辛大学米尔沃基分校表面研究实验室的主任迈克尔·梅韦纳说:“还原反应会去除氧,但实际上,我们获得了更多氧,因此,我们需要了解的事情还有很多。”该研究团队的成员、力学工程教授陈俊鸿(音译)表示:“石墨烯研究领域的主要驱动力之一是使这种材料成为半导体,我们通过对石墨烯进行化学改性得到了新材料GMO。GMO展示出的特性表明,它比石墨烯更容易大规模生产。”因为GMO是单层形式,因此其或许可应用于与表面催化有关的产品中。他们正在探索其在锂离子电池阳极的用途,GMO有可能提升锂离子阳极的效能。研究人员埃里克·马特森说:“我们认为氧会离开,留下多层石墨烯,但结果却并非如此,让我们很吃惊。”据电磁流量计了解,石墨烯的导电、导热性能极强,远超硅和其他传统的半导体材料,而由硅制成的晶体管的大小正接近极限,科学家们认为,纳米尺度的碳材料可能是“救命稻草”,石墨烯未来有望取代硅成为电子元件材料。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)