天能a6石墨烯什么档次

天能a6石墨烯什么档次,第1张

A6石墨烯是一种半导体材料,具有优异的电子性能,可用于制造高性能的电子器件。它的档次主要取决于其结构特性,如碳原子的数量、结构形状、表面状态等。一般来说,A6石墨烯的档次从低到高可分为一级、二级、三级和四级。一级A6石墨烯具有较低的碳原子数量,结构较松散,表面较粗糙;二级A6石墨烯具有较高的碳原子数量,结构较紧凑,表面较光滑;三级A6石墨烯具有更高的碳原子数量,结构较紧凑,表面较光滑;四级A6石墨烯具有最高的碳原子数量,结构较紧凑,表面较光滑。

石墨烯具有的优质性能1.导电性石墨烯新颖的电子性质在于它可以维持巨大的电流。石墨烯中的π键使石墨烯具有电子传导性,并使石墨烯层之间产生较弱的相互作用。石墨烯中的载流子可用狄拉克方程而不用薛定谔方程来描述。由于蜂窝晶体中有两个等价的碳亚晶格,锥状的价带和导带相交于费米能级处布里渊区的K和K0点。这些无质量的狄拉克费米子显示出许多优越的特性。石墨烯是零带隙的二维半导体材料,它清晰地显示出双极电场效应、准粒子,和较长的平均自由程(微米量级的)。此外,二维中狄拉克能量色散意味着石墨烯是一种零带隙的半导体材料,当接近费米能级处时其态密度成线性消失。石墨烯传导时其电子或空穴浓度高达10E13cm-2。它显示出杰出的载流子迁移率约为200,000cm2╱V.s。如此高的迁移率是因为完美的石墨烯蜂窝状晶格使电子能够十分顺利地通过,能够控制其带隙。就像半导体一样,人们可以控制和调节电子运动以产生预期的结果。换言之,除非能够提供能量来加强电子穿越间隙,即在价带和导带之间的间隙,否则石墨烯不可用以传导。2.导热性石墨烯的近室温导热系数在(4.84±0.44)×10E3和(5.30±0.48)×10E3W╱m.K之间(Balandinetal.,2008)。化学气相沉积制备的石墨烯显示出较低值(≈2500W╱mK)(Caietal.,2010)。它被认为具有一定的结构类型,即AA或AB型;石墨烯的层数也对其热导率产生影响。由于石墨烯的高热导性(由于其强烈的CAC共价键和声子散射,无缺陷的纯石墨烯单层在室温下导热性可高达5000W╱mK(Ballandinetal.,2008),它被认为是电子设备中重要的组成部分。在室温下,单层纯石墨烯的热导率比先前研究的其他碳的同素异形体的热导率高很多,例如,碳纳米管(多壁碳纳米管为3000W╱mK(Kimetal.,2001),单壁碳纳米管为3500W╱mK(Popetal.,2005)。导热率会受一些因素的影响,如缺陷,边缘散射(Nikaetal.,2009)和同位素掺杂(Jiangetal.,2010)。一般而言,所有这些因素都会对导电率产生不利影响,这是因为掺杂导致缺陷和声子模式局部化从而产生了声子散射。3.比表面积石墨烯成六角苯环结构,边长0.142纳米,面积为0.052nm2。所以面密度为0.77mg╱m2时,取得比表面积为2630m2╱g。4.d性模量依据Voigt石墨本构方程式:式中,下标1和2为石墨烯面内的两个主方向,而3为其法向。实验测量得到值为C11=1060Gpa、C12=36.5Gpa、C44=4Gpa、C12=180Gpa及C13=15Gpa。由此矩阵中还可以看出,由於碳原子之间SP2键极强,石墨面内的d性模量高达1Tpa。由于高各向异性程度的原因是石墨烯之间的弱相互作用,这通常被认为是范德华力相互作用或π电子间的耦合作用,实验测出石墨烯层间的剪切模量为4Gpa,剪切强度为0.08Mpa,明显小于碳原子间的机械性能。石墨烯被氧化后的物理性质有显著的改变。可以看出首先是环氧基中的C-O-C键角发生弯曲,而氧原子向石墨面内方向运动,由此得到氧化石墨烯其杨氏模量为610Gpa,较石墨烯的1060Gpa还低。5.透光性石墨烯是透明的,单层石墨烯吸收2.3%πα≈2.3%的白光(97.7%透光率),α为精细结构常数,其值约为~1/37。堆叠顺序和方向影响着石墨烯的光学特性;因此,双层石墨烯展现出新颖有趣的光学特性。6.化学稳定性及反应性石墨烯的化学稳定性高是由于蜂窝网状结构中强大的面内sp2杂化键的存在。石墨烯的化学惰性可应用于防止金属和金属合金的氧化。陈等(Chenetal.,2011)用化学气相沉积技术将石墨烯镀在铜和铜╱镍上,首次演示了石墨烯的抗氧化性能。石墨烯具有的化学稳定性和惰性使它有望提高潜在的光电子器件的耐久性(Blakeetal.,2008)。7.阻隔性石墨烯片具有高度灵活性。它们可以像气球一样被拉伸,甚至在几种大气的立压差下也无碍。即使是像氦这样的小原子也无法渗透它。有些文献会使用氧化石墨烯来阻隔膜,我现在才发现是因为石墨烯分散性较差而不得不做的取舍,毕竟石墨烯成膜性高,再者,氧化石墨烯是亲水性会吸水,而石墨烯为疏水性,阻水性更佳

石墨烯(Graphene)是一种二维晶体,由碳原子以 sp2 杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。

石墨烯的结构

毋庸置疑,石墨烯是继纳米碳管、富勒烯球后的又一重大发现,石墨是三维(或立体)的层状结构,石墨晶体中层与层之间相隔340pm,距离较大,是以范德华力结合起来的,即层与层之间属于分子晶体。

但是,由于同一平面层上的碳原子间结合很强,极难破坏,所以石墨的溶点也很高,化学性质也稳定,其中一层就是石墨烯。

石墨烯是由单层碳原子组成的六方蜂巢状二维结构,它可以包裹起来形成零维的富勒烯(Fullerene,又译作福乐烯),又名巴基球或巴克球(Buckyball,其他名称还有球碳与芙,是继金刚石和石墨之后于1985 年发现的碳元素的第三种晶体形态。

卷起来形成一维的纳米碳管(Carbon Nanotube 是具有石墨结构、并按一定规则卷曲形成纳米级管状结构的孔材料),层层堆积形成三维的石墨。

石墨烯的特点

纯净的石墨烯是一种只有一个原子厚的结晶体,具有超薄、超坚固和超强导电性能等特性,石墨烯具有优异的电学、热学和力学性能,这些特点可以帮助石墨烯在高性能纳米电子器件、复合材料、场发射材料、气体传感器及能量存储等领域获得广泛应用。

科学界认为石墨烯极有可能凭借无与伦比的特点和优势取代硅而成为未来的半导体材料,具有非常广阔的应用前景。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9170725.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存