半导体芯片测试贯穿芯片设计,晶圆制造以及封装和测试的整个过程 。它在降低半导体芯片和分立器件的成本,提高产品良率以及改善制造工艺方面起着关键作用。从狭义上讲,对半导体芯片测试的理解集中在封装和测试过程中。实际上,半导体芯片测试贯穿整个生产过程, 从半导体芯片设计开始,继续进行半导体芯片制造,最后进行封装半导体芯片的性能测试 。测试电路时,通过将芯片连接到 半导体芯片测试机,向芯片施加信号,分析芯片的输出信号,并将其与期望值进行比较,然后获得有关芯片,半导体性能的指标芯片分选机和探针台将芯片连接到测试仪以实现自动化测试 。下游主要包括芯片设计公司,晶片制造公司以及封装和测试厂商。
晶圆制造过程测试也称为中级测试。它用于 识别晶片上的工作芯片性能,以确保只有能够实现正常数据通信并通过电气参数和逻辑功能测试的芯片才能进入封装过程,以节省不必要的时间,同时,它可以为晶圆厂提供良率数据批量生产半导体芯片,及时发现半导体芯片技术的缺陷 。此阶段的半导体芯片测试可以在晶圆厂中进行,也可以送到工厂附近的代工厂进行测试,这一环节主要使用半导体芯片测试机和探针台。半导体芯片探针台是高精度设备,其技术障碍主要体现在关键参数上,例如系统的精确定位,微米级运动和高精度通信。
最终测试用于确保成品半导体芯片在出厂前能够满足设计规范要求的性能和功能。它主要使用 半导体芯片测试仪和分选机 。分选机将被测试的芯片分批提供给测试仪器。在一定的测试环境下,将半导体芯片测试零件的引脚与测试机的电信号相连,半导体芯片测试机的吞吐量对于提高自动化程度和测试起着重要的作用。 半导体芯片封装形式的逐渐多样化将对半导体芯片分类器在各种封装形式下快速切换测试模式的能力提出更高的要求 。
长川 科技 在成立之初,就以半导体芯片模拟测试仪和分选机为起点,走了自主研发之路 。经过多年的精耕细作,实现了产品从零开始的不断升级,深化了产品布局。半导体芯片测试机和分选机的核心性能指标可与国际先进水平相提并论,同时价格低于竞争产品,具有成本效益优势。
经过一系列的研发,公司推出了第一代半导体芯片模拟测试仪CTA8200,以满足功率放大器,运算放大器和电机驱动模拟半导体芯片的电气性能参数测试需求。随后公司启动了第二代模拟/数字混合半导体芯片测试机的研发,并推出了CTA8280型号,从而缩短了信号源响应时间,提高了数据转换精度,减少了线路干扰,改善了测试数据稳定性和测试效率等方面已得到明显改善。先后推出了CTT3600,CTT3280和CTT3320三种型号。其中,CTT3320系统是中国具有最强并行测试能力的半导体芯片功率设备测试系统,具有32位并行测试能力。
公司的分选机主要是半导体芯片重力分选机和平移分选机。半导体芯片重力分选机主要用于传统包装形式的分选。随着半导体芯片包装从插入生产到贴片生产的逐步过渡,该公司成功开发出了具有视觉检查功能的半导体芯片检查和收集一体机。非常适合后续过程中自动放置的生产模式。随着QFP,QFN和BGA先进封装的兴起,对半导体芯片分选机的测试速度,测试压力,精度,多功能性和适应性提出了更高的要求。该公司已经开发了相关技术,以实现PLCC,BGA,LGA和其他半导体芯片封装形式,以满足处理器,SOC和MCU等高端半导体芯片的测试要求。
全球测试设备市场高度集中。 Tokyo Precision和Tokyo Electronics占据了探测台市场80%以上的份额;在分选机市场中,Advan,Corsue和Epson这三个公司的市场份额已超过60%。Advan和泰瑞达以87%的市场份额几乎垄断了测试机市场。 泰瑞达在SoC测试领域占据绝对领先地位,市场份额接近57%。Advan的市场份额为40%的市场份额已成为内存测试的领导者。模拟测试的技术障碍相对较低。我国长川 科技 和北京华峰在模拟/数字-模拟混合测试领域做出了努力,并在国内替代方面取得了一定进展。 长川 科技 的第三代半导体芯片模拟测试系统拥有高端设备,可以实现替代国外高端机器。北京华峰自主研发的半导体芯片模拟混合信号自动测试系统STS 8200成功打破了国外垄断,华峰已进入意法半导体,日月光等国际厂商的供应商体系。与先前的晶片制造设备相比,封装和测试设备的技术难度较小,并且定位的难度较低。另外,大陆包装测试公司在世界上具有很强的竞争力,国内包装测试设备公司可以切入下游客户,为实现国产替代创造良好条件。
2020年前三季度,公司实现营业收入5亿元,同比增长150%,归属于母公司所有者的净利润为0.35亿元,同比增长2584%;其中第三季度营业收入为1.82亿元,同比增长82%,归属于母公司所有者的净利润为906万元,同比增长3598%。 虽然营收与净利润同比增长,但仍有很大不足,仍需改善。
A股上市公司半导体芯片测试设备黑马股长川 科技 处于中短期上升格局,主力机构阶段性控盘结构,据大数据统计,主力筹码约为40%,主力控盘比率约为43%, 趋势研判与多空研判方面,可以参考13日均线及21日均线,均线组排列关系影响中期格局,13日均线作为中短期多空参考,21日均线作为中期参考。
半导体设备,即在芯片制造和封测流程中应用到的设备,广义上也包括生产半导体原材料所需的机器设备。在整个芯片制造和封测过程中,会经过上千道加工工序,涉及到的设备种类大体有九大类,细分又可以划出百种不同的机台,占比较大市场份额的主要有:光刻机、刻蚀机、薄膜沉积设备、离子注入机、测试机、分选机等。
半导体行业周期性带来新动能
从全球半导体发展情况来看,受宏观经济变化及技术革新影响,半导体行业存在周期性。2017-2019年,全球半导体行业来到了下滑周期。2019年,全球固态存储及智能手机、PC需求增长放缓,全球贸易摩擦升温,导致全球半导体需求市场下滑,全年销售额为4121亿美元,同比下降12.1%。进入2020年,有5G商用化、数据中心、物联网、智慧城市、汽车电子等一系列新技术及市场需求做驱动,将给予半导体行业新的动能。
全球半导体设备市场规模约600亿美元
根据国际半导体产业协会SEMI统计数据显示,近年来全球半导体设备销售额呈波动态势,2019年为597.5亿美元,比2018年的645.3亿美元的历史高点下降了7.4%。2020年一季度,全球半导体设备销售额为155.7亿美元,比2019年第四季度减少13%,但与2019年一季度相比,增长了13%。半导体设备总市值虽仅几百亿美元,但其是半导体制造的基石,支撑着全球上万亿的电子软硬件大生态,设备对整个半导体行业有着放大和支撑作用,确立了整个半导体产业可达到的硬性尺寸标准边际值。
前道设备占据主要市场份额
从半导体的制造流程来看,前道流程较多,涉及的设备种类也较多。在一个新晶圆投资建设中,设备投资一般占70-80%。而按工艺流程分类,在新晶圆的设备投资中,晶圆加工的前道设备占据主要的市场份额,约80%封测设备占据约18%的比重。
市场主要集中在中国台湾及大陆地区
近些年,在全球半导体设备消费市场中,中国大陆,中国台湾,韩国这三大市场一直排在前三位。其中,中国大陆最具发展潜力,从前些年的第三,到最近一年的第二,一直处于上升态势。
具体来看,2019年,中国台湾是半导体设备的最大市场,销售额增长了68%,达到171.2亿美元,占全球市场的比重为28.65%。中国大陆则以134.5亿美元的销售额保持其第二大设备市场的地位,占比为22.51%。排名第三的是韩国,销售额为99.7亿美元,同比下降44%,占比为16.69%。
2020年一季度,排名前三的仍是中国台湾、中国大陆以及韩国,销售额占比分别为25.82%、22.48%、21.58%。
日美荷品牌占领前位
目前全球半导体设备市场集中度较高,以美国、荷兰、日本为代表的TOP10企业垄断了全球半导体设备市场90%以上的份额。美国著名设备公司应用材料、泛林半导体、泰瑞达、科天半导体合计占据整个设备市场40%以上份额,而且均处于薄膜、刻蚀、前后道检测三大细分领域的绝对龙头地位。技术领先和近半的市场占有率,任何半导体制造企业都很难完全脱离美国半导体设备供应体系。
未来规模预计超千亿
从整体来看,尽管受疫情的影响,半导体行业及半导体设备行业依然逆势增长。存储器支出回升、先进制程投资及中国大陆积极推动半导体投资的背景下,预计2020年全球半导体设备市场将持续保持增长,市场规模预计达到632亿美元,同比增长6%2021年预计达到700亿美元2025年将超千亿美元。
以上数据来源于前瞻产业研究院《中国半导体产业战略规划和企业战略咨询报告》。
芯片分析仪器有:1 C-SAM(超声波扫描显微镜),无损检查:1.材料内部的晶格结构,杂质颗粒.夹杂物.沉淀物.2. 内部裂纹. 3.分层缺陷.4.空洞,气泡,空隙等. 德国2 X-Ray(这两者是芯片发生失效后首先使用的非破坏性分析手段),德国Feinfocus微焦点Xray用途:半导体BGA,线路板等内部位移的分析 ;利于判别空焊,虚焊等BGA焊接缺陷. 参数:标准检测分辨率<500纳米 ; 几何放大倍数: 2000 倍 最大放大倍数: 10000倍 ; 辐射小: 每小时低于1 μSv ; 电压: 160 KV, 开放式射线管设计防碰撞设计;BGA和SMT(QFP)自动分析软件,空隙计算软件,通用缺陷自动识别软件和视频记录。这些特点非常适合进行各种二维检测和三维微焦点计算机断层扫描(μCT)应用。Feinfocus微焦点X射线(德国)Y.COUGAR F/A系列可选配样品旋转360度和倾斜60度装置。Y.COUGAR SMT 系列配置140度倾斜轴样品,选配360度旋转台3 SEM扫描电镜/EDX能量弥散X光仪(材料结构分析/缺陷观察,元素组成常规微区分析,精确测量元器件尺寸), 日本电子4 EMMI微光显微镜/OBIRCH镭射光束诱发阻抗值变化测试/LC 液晶热点侦测(这三者属于常用漏电流路径分析手段,寻找发热点,LC要借助探针台,示波器)5 FIB做一些电路修改;6 Probe Station 探针台/Probing Test 探针测试,ESD/Latch-up静电放电/闩锁效用测试(有些客户是在芯片流入客户端之前就进行这两项可靠度测试,有些客户是失效发生后才想到要筛取良片送验)这些已经提到了多数常用手段。失效分析前还有一些必要的样品处理过程,取die,decap(开封,开帽),研磨,去金球 De-gold bump,去层,染色等,有些也需要相应的仪器机台,SEM可以查看die表面,SAM以及X-Ray观察封装内部情况以及分层失效。除了常用手段之外还有其他一些失效分析手段,原子力显微镜AFM ,二次离子质谱 SIMS,飞行时间质谱TOF - SIMS ,透射电镜TEM , 场发射电镜,场发射扫描俄歇探针, X 光电子能谱XPS ,L-I-V测试系统,能量损失 X 光微区分析系统等很多手段,不过这些项目不是很常用。FA步骤:2 非破坏性分析:主要是超声波扫描显微镜(C-SAM)--看有没delamination,xray--看内部结构,等等;3 电测:主要工具,万用表,示波器,sony tek370a,现在好象是370b了;4 破坏性分析:机械decap,化学 decap芯片开封机半导体器件芯片失效分析 芯片内部分层,孔洞气泡失效分析C-SAM的叫法很多有,扫描声波显微镜或声扫描显微镜或扫描声学显微镜或超声波扫描显微镜(Scanning acoustic microscope)总概c-sam(sat)测试。微焦点Xray用途:半导体BGA,线路板等内部位移的分析 ;利于判别空焊,虚焊等BGA焊接缺陷. 参数:标准检测分辨率<500纳米 ; 几何放大倍数: 2000 倍 最大放大倍数: 10000倍 ; 辐射小: 每小时低于1 μSv ; 电压: 160 KV, 开放式射线管设计防碰撞设计;BGA和SMT(QFP)自动分析软件,空隙计算软件,通用缺陷自动识别软件和视频记录。这些特点非常适合进行各种二维检测和三维微焦点计算机断层扫描(μCT)应用。芯片开封机DECAP主要用于芯片开封验证SAM,XRAY的结果。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)