导读
背景
在隐藏于笔记本电脑或者智能手机中的每个现代微型电路中,你都会看到晶体管。晶体管是一种小型半导体器件,它控制电流流动,即电子的流动。
如果用光子(光的基本粒子)取代电子,那么科学家们将有望创造出新型计算系统,这种系统将能够处理以接近光速流动的大量信息。
目前,在量子计算机中,光子被认为是传递信息的最佳方案。然而,这些仍然只是假想计算机。它们按照量子世界的规律运作,并且能比大多数最强大的超级计算机更加高效地解决某些问题。
虽然创造量子计算机没有基本限制,但是科学家们仍然没有选择出哪种材料平台可以最方便且有效地实现量子计算机概念。目前,超导电路、冷原子、离子、钻石中的缺陷以及其他系统,为了被未来量子计算机选中而展开竞争。
创新
这一次,科学家们提出了半导体平台和二维晶体。近日,维尔茨堡大学(德国)、南安普顿大学(英国)、格勒诺布尔-阿尔卑斯大学(法国)、亚利桑那大学(美国)、西湖大学(中国)、俄罗斯科学院约飞物理技术研究所、圣彼得堡国立大学的科学家们组成的国际科研团队研究了光子是如何在世界上最薄的半导体晶体平面中传播的。结果是,空间中的光线偏振分布类似于三色的海螺。物理学家们的研究成果为创造单原子光学晶体管(量子计算机的组件)开辟了道路,有望实现光速计算。研究论文发表在《自然纳米技术(Nature Nanotechnology)》期刊上。
技术
研究人员研究了光线在二硒化钼(MoSe2)二维晶体层中的传播。二硒化钼只有一个原子的厚度,是世界上最薄的半导体晶体。研究人员发现,偏振光在这种极细晶层中的传播取决于光线传播的方向。这个现象是由于晶体中的自旋轨道相互作用引起的。有意思的是,正如科学家们所指出的,这幅图展示的偏振光空间分布非同寻常,看上去像五彩缤纷的的海螺。
实验中所用的非常精细的二硒化钼晶体是在维尔茨堡大学 Sven Höfling 教授实验室中合成的。它是欧洲最佳的晶体生长实验室之一。在圣彼得堡国立大学教授 Alexey Kavokin 的监督下,科学家们在维尔茨堡和圣彼得堡进行测量。Mikhail Glazov 在开发理论基础中扮演了重要角色。他是俄罗斯科学院的通信成员、圣彼得堡国立大学自旋光学实验室的雇员、约飞物理技术研究所的首席研究助理。
价值
圣彼得堡国立大学自旋光学实验室的领头人 Alexey Kavokin 教授表示:“我预见,在不久的将来,二维单原子晶体将用于量子设备中的信息传输。对于经典的计算机与超级计算机需要花很长时间才能完成的任务来说,量子计算设备完成起来非常快。因此,量子技术有着巨大的危险,可以与原子d的危险相提并论。例如,在量子技术的帮助下,非常迅速地非法入侵银行保护系统将成为可能。这就是如今密集的研究工作在进行的原因所在。这些工作包括创造保护量子设备的手段,即量子加密技术。而我们的工作主要为半导体量子技术作出了贡献。”
此外,正如科学家们所提到的,这项研究是朝着研究光诱导(即出现在光线下)的超导性迈出的重要一步。当材料允许电流以零电阻通过时,超导现象就发生了。目前,这种状态无法在零下70摄氏度以上的温度条件下实现。可是,如果找到合适的材料,这项发现有可能将电力零损耗地传输到地球上的任何位置,并创造出新一代的电动马达。应该被记住的是,2018年3月,Alexey Kavokin 的研究团队曾预测,含有超导金属(例如铝)的结构,有助于解决这个问题。如今,圣彼得堡国立大学的科学家们正在寻找途径获取他们理论的实验证据。
参考资料
【1】http://english.spbu.ru/news/3015-three-colour-rapana-physicists-have-let-light-through-the-plane-of-the-world-s-thinnest-semiconductor-crystal
自然界中有 10 万种材料,其中约 5000 种是层状材料。如果将它两两组合或者三三组合,那么可能性远远大于 100 万种,其物理性质也大有不同。
“纳米积木”(原子层范德华纳米材料及其异质结构),就是把不同的层状材料的单层或少层分离出来,像搭积木一样,通过堆叠、旋转等方式,设计特定的形状或结构,形成一个自然界中不存在的 “人造晶体”。
山西大学光电研究所韩拯就是玩转 “纳米积木” 的一位年轻教授,他通过设计特殊的结构,借用传统半导体器件的范例,在微纳米尺度新型半导体结构,展示了二维层状材料垂直组装电子器件的诸多新奇物理现象。
韩拯和合作者首次利用二维原子晶体替代硅基场效应鳍式晶体管的道沟材料,在实验室规模演示了目前世界上沟道宽度最小的鳍式场效应晶体管,将沟道材料宽度减小至 0.6 纳米。同时,获得了最小间距为 50 纳米的单原子层沟道鳍片阵列。
此外,他带领的研究团队首次报道的二维本征铁磁半导体自旋场效应器件,为继续寻找室温本征二维铁磁半导体提供了指导意义。
图 | 《麻省理工 科技 评论》“35 岁以下 科技 创新 35 人” 2020 年中国区榜单入选者韩拯
凭借上述研究成果,韩拯成功入选 “35 岁以下 科技 创新 35 人”(Innovators Under 35)2020 年中国区榜单,获奖理由为用二维功能材料制造新型的纳米电子器件,以新型的原子层次制造路线突破半导体工艺,为后摩尔时代晶体管工艺寻找新方案。
铅笔芯的主要成分是石墨,是典型的范德华材料。由于石墨中碳原子层与层之间的范德华结合力较弱,在纸上写字过程当中笔尖上“蹭”下来的二维碳纳米片,就成为了宏观下人们看到的字迹。直到 2000 年左右,英国曼彻斯特科学家安德烈・海姆(Andre Geim,AG)和康斯坦丁・诺沃肖洛夫(Konstantin Novoselov)首次把石墨的单原子层(约 0.3nm 厚)分离了出来,并因此获得了 2010 年诺贝尔物理学奖。
韩拯以此为灵感,对物理、材料工程、微观世界等科学领域愈发好奇,这也跟他的成长经历息息相关。
韩拯是江苏人,本科考入吉林大学物理学院,开始核物理专业学习。之后考入中国科学院金属研究所材料学硕士专业。2010 年,他在法国国家科学中心 CNRS 下属的 NEEL 研究所攻读纳米电子学与纳米 科技 博士学位。其导师对于他的评价是:“年轻躁动、充满创新活力。”
之后他作为博士后,在美国哥伦比亚大学物理系,从事范德华人工异质结构的维纳器件量子霍尔效应和电子光学等物理性能研究。
“随着对自身行业的不断深入了解和研究,渐渐地进入了角色,也爱上了科研。” 韩拯告诉 DeepTech。
期间,他作为共同第一作者,完成了二维d道输运电子在 pn 结界面的负折射工作,为实现新的电子开关创造了基础,被 Physics World 杂志评为 2016 年度十大物理学突破之一。
在 2015 年 9 月,而立之年的韩拯决定回国,之后一直在中国科学院金属研究所开展新型人工纳米器件的量子输运调控研究。
对于他而言,在研究当中最享受和最开心的事莫过于,本来一个不太明白的事,不断地通过数据积累与同行讨论之后把它弄明白。
之后,韩拯团队以少数层二硫化钼为研究体系,利用超薄(少数原子层)的六方氮化硼(h-BN)作为范德华异质结的隧穿层,系统开展了隧穿晶体管器件研究。
图 | 硫化钼隧穿晶体管光学照片(比例尺 5 微米)、多工作组态整流效应、以及垂直方面切面图
通过在金属和半导体 MoS2 界面之间引入隧穿层 h-BN,可有效降低界面处的肖特基势垒,从而实现通过局域栅电极对通道 MoS2 费米能级的精确静电调控。所获得的 MoS2 隧穿晶体管仅通过门电压调控,即可实现具有不同功能的整流器件,包括 pn 二极管、全关、np 二极管、全开器件。
这项工作首次将双向可调的二极管和场效应管集成到单个纳米器件中,为未来超薄轻量化、柔性多工作组态的纳米器件提供了研究思路。
之所以选择纳米新材料这个方向,除了自身专业背景之外,更重要的是韩拯对科学一直抱有好奇心。
对此,韩拯表示:“硬盘的读写速率速度越来越跟不上 CPU 的运行速度,如果能把它俩合到一起去做存算一体,可以提高计算机的性能。最直接的方法就是把硅半导体与磁复合到一起,变成一个磁性半导体。”
韩拯团队采用惰性气氛下原子层厚度的垂直组装,发现 3.5nm 厚的 Cr2Ge2Te6 材料在铁磁居里温度以下能够保持优秀的载流子导通性,并且能够实现电子与空穴的双极场效应。该型纳米器件在门电压调控下,磁性亦能得到有效调控,并且与电输运相仿,存在双极门电压可调特性。
“磁性的来源是电子自旋和自旋之间的相互作用。目前,人们发现的室温铁磁性基本上要么在金属当中,要么在绝缘体当中,半导体的磁性很难维持到室温。科学家们一直在积极研究寻找室温下堪用的磁性半导体。” 韩拯告诉 DeepTech。
少数层 Cr2Ge2Te6 是目前已知的首个拥有内禀自旋和电荷态密度双重双极可调特性的二维纳米电子材料,这为继续寻找室温本征二维铁磁半导体提供了一定的指导意义。
例如,来自新加坡国立大学的研究团队在该研究基础上,进一步加强了离子掺杂胶的载流子浓度,将少数层 Cr2Ge2Te6 的铁磁居里温度增强了 4 倍,达到 250K(零下 25 摄氏度)温度。
除此之外,韩拯与合作者首次针对具有巨大面内电导率各向异性的二维材料碲化镓,通过垂直电场实现了对该各向异性电阻率比值的调控,从 10 倍调控至高达 5000 倍,该数值为目前已知二维材料领域里报道的最高记录。
这意味着发现了电子世界的 “交通新规”:在晶格传输过程中,受外电场的影响,电子的导电特性沿着不同方向表现出了一定的差异。
也就是说,如果将电子传输通道比喻成两条垂直的繁华街道。当没有电场时,一条是另一条通过率的 10 倍左右。一旦施加一定强度的外电场,这两条 “车道” 上的电子通过率差别可高达 5000 倍。
站在科幻角度来描述,这种材料可以制作成为一种新型各向异性存储器,当该存储器中一次性写入的数据,沿其中一个方向读取出来的是一本小说,而沿另一个方向读取出来的,则是一部电影。
发现的二维极限 GaTe 纳米电子器件展示出了门电压可调的、面内巨各向异性电阻效应(Giant Anisotropic Resistance),为实现新型各向异性逻辑运算、存储单元、以及神经元模拟器件等提供了可能。
之后,韩拯与合作者湖南大学刘松教授、金属研究所孙东明教授等人,首次提出了利用二维原子晶体替代硅基场效应晶体管 FinFET 的 fin 的沟道材料,通过模板生长结合多步刻蚀的方法,制备出了目前世界上沟道宽度最小的(0.6nm)鳍式场效应晶体管(FinFET),也是目前世界上最薄的鳍式晶体管。
FinFET 是一种为了解决由于进一步集成化需求,硅基平面场效应晶体管的尺寸被进一步缩小所引起的短沟道效应等问题,采用将沟道和栅极制备成 3D 竖直形态的鳍(fin)式晶体管。然而,受限于目前微纳加工的精度,报道的硅基 FinFET 沟道宽度最小约为 5nm。
该团队采用自下而上 Bottom-up 的湿法化学沉积,在高度数百纳米台阶状的模板牺牲层上连续保形生长单层二维原子晶体半导体,最终将 FinFET 的沟道材料宽度缩小至单原子层极限的亚纳米尺度(0.6 nm),几乎达到物理极限。
同时,采用多重刻蚀等微纳加工工艺,基于此制备演示了最小间距为 50 nm 的单原子层沟道鳍片阵列,为后摩尔时代的场效应晶体管器件的发展提供了新方案。
在工业界,尤其在半导体工业,大家都希望芯片的尺度越来越小,性能越来越高。FinFET可以把平面通道变成站立通道,这样就节约了大量的空间,如此一次就能在更小的面积里,储存更多的芯片或运算单元。
简单来讲,韩拯其主要研究的是功能材料在尺寸非常非常小的时候,有哪些有趣的物理性质和新奇的物理行为,并进一步利用这些有趣的物理现象,来组装制造成纳米尺度下的低功耗、多功能、智能化的小型电子器件。
事实上,一些范德华材料已经在例如透明柔性电子、能源催化等诸多性能方面超越了传统材料,具有诱人的发展前景。
“团队目前虽然以基础研究为主,但也正在逐渐努力从实验室走向应用,我们需要进一步在原始创新以及与应用研究交叉结合等方面多下功夫”。如何实现从零到一的创造发明,并不断加强研究的深度,将是韩拯团队后续工作中的首要目标。
“我们知道这很难,但是仍然要努力学习做一名孤独的研究者,一方面,是静下心来钻研的孤独,另一方面,则是在创新创造上独树一帜。” 韩拯告诉 DeepTech。
在下一阶段,韩拯表示将继续深耕纳米积木领域,专注在新原理、新结构、新制造方式等科学目标。用自下而上、原子层次制造的路线,与目前主流的自上而下半导体工艺相结合,从而展现更多的可能性。
相信在摩尔定律行将失效不久的将来,小尺寸的突破口,一定出现在纳米制造领域,例如自组装、生物模版、原子层次 3D 打印等等。
A、石墨烯具有优良的导电性,所以可以用来制成高压输电用的导线,该选项不符合题意;B、石墨烯是新的半导体材料,因此可以制作发光二极管,该选项不符合题意;
C、保温隔热材料,要求导热性能差,而石墨烯具有优良的导热性,故不适合做保温隔热材料,该选项符合题意.
故选C.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)