作者|吴昕
停摆两年的烂尾半导体项目「成都格芯」终于迎来了接盘者。
据集微网报道,多位业内人士介绍,成都高真 科技 将接盘成都市政府为格芯投资70亿元建设的厂房,并在此基础上建设DRAM生产线。
格芯即格罗方德。2017年全球第二大晶圆制造厂商格罗方德,在成都正式启动建设12英寸晶圆制造基地,总投资超过100亿美元。工厂建成后业务即接近停摆,2019年5月17日宣布关闭。
接手者成都高真 科技 有限公司成立于2020年9月28日,法定代表人和实际受益人崔珍奭是前SK海力士副会长、前三星电子技术开发部首席研究员。据悉,目前韩国仅有两名可以具备全半导体领域从研发到量产经验的元老,崔珍奭是其中之一。
DRAM芯片市场垄断程度极高,基本被三星、SK海力士、美光三家瓜分,且竞争残酷,打压对手现象十分严重。我国DRAM芯片正处于从0到1的起步阶段,若接盘成功,对国内市场会是非常大的利好。
企查查资料显示,成都高真 科技 有限公司注册资本51.091亿元人民币,目前有两家股东:成都积体半导体有限责任公司出资30.6546亿元,持股60%;真芯(北京)半导体有限责任公司出资20.4364亿元,持股40%。
其中,成都积体成立于2020年9月28日,由成都高新区电子产业信息发展有限公司100%持股,实际受益人为NEXT创业空间CEO贺照峰。
真芯(北京)是崔珍奭的另一家公司,成立于2019年11月14日,由西安市新隆宏鑫 科技 服务有限公司100%持股。
崔珍奭堪称韩国半导体界元老级人物,历任三星电子技术开发部首席研究员、常务理事和SK海力士半导体专务理事、副社长等,并在多所大学担任过教职。
他从三星跳槽至SK海力士时是本世纪初,当时海力士濒临破产,崔珍奭带领手下技术团队在不到2年内将公司研发能力提升到与三星同等水平,使海力士起死回生,堪称韩国半导体发展史上的经典。
从可查询到的资料来看,崔珍奭对中国半导体市场有很大的兴趣,曾在2018年接受国内媒体采访时表示,「韩国半导体业界已感受到中国的进步。虽然韩国企业规模更大,综合技术实力更强,但中国的步伐显然迈得更快。」
2019年,崔珍奭在中国成立真芯(北京)半导体有限责任公司。 企查查数据显示,真芯已经申请了43项晶圆制造相关专利,所有技术均为真芯半导体与中科院微电子合作研发,其中两项专利直接与DRAM芯片相关。
据集微网,真芯还引援了SK HAN、YH KOH两员大将,分别担任COO和CTO。SK HAN有着35年的半导体行业经验,曾担任三星制造部门9Line PJT长、SK海力士M8/M9制造部本部长。YH KOH则曾担任SK海力士NAND/Mobile&Graphic DRAM开发部门GM。
格罗方德宣布在成都建厂时,消息轰动了整个半导体界。
2017年、2018年前后正值我国集成电路产业发展良好,中央和地方政府纷纷出台扶持政策,一时间全国上下都掀起了一阵造芯热。
作为我国中西部重镇,成都已经吸引了英特尔、德州仪器、超微半导体、联发科、展讯等企业布局,形成了设计、制造、封测完整的产业链。
格芯在成都启动建设的是12英寸晶圆制造基地。工厂按计划分两期进行。一期12寸厂将从新加坡厂引入0.18/0.13μm工艺,预估2018年第四季投产;二期将导入22nm FD-SOI工艺,预估2019年第四季投产。
成都政府为格芯建厂投入70亿元,负责厂房、配套的建设和研发、运营、后勤团队的组建。但总投资规模累计超过100亿美元,其中基础设施是93亿美元,其余为基础设施和生态链建设。
与大多数晶圆制造公司用FinFET工艺不同,格芯选择的是FD-SOI工艺,设计制造成本更低,在物联网、可穿戴设备、 汽车 、网络基础设施与机器学习、消费类多媒体等领域都大有用处。
但FD-SOI工艺的发展受限于生态系统不够完善,在IP建设、量产经验与应用推广上都不尽如人意。所以当时格芯就有意和成都政府一起建设FD-SOI生态链,希望中国的芯片设计公司能够采用SOI技术来迅速推动市场成熟。
格芯当时在全球运营11座晶圆厂(5座8寸,6座12寸),其中8寸晶圆厂有4座位于新加坡(原特许半导体),1座位于美国(原IBM);12寸晶圆厂有2座位于新加坡(原特许半导体,其中一座是8寸升级而来),2座位于美国(1座是原IBM),2座12寸位于德国(原AMD的FAB 36和FAB 38,现统称FAB1),工艺节点从0.6μm~14nm。
新加坡业务运营的总经理兼任成都工厂CEO,由于新加坡工厂负责人很多都是华裔,他们已经在准备用当地的客户、工艺、人才支持格芯成都起步。
不过,建厂两年不到格芯就停摆了。
2019年5月17日成都格芯下发了三份《关于人力资源优化政策及停工、停业的通知》。通知中,成都格芯称,「鉴于公司运营现状,公司将于本通知发布之日起正式停工、停业」。
而对于后续仅剩的74名员工的赔偿安排,该通知称,在2020年6月14日及以前离职的,格芯将按劳动合同规定的工资标准支付工资。6月15日及以后,按照不低于成都市最低工资标准的70%支付基本生活费。
对于7月18日及以前合同到期的员工,格芯也将不再续签劳动合同,并支付经济补偿(N)。7月19日及以后合同到期的员工则能获得N+1的经济补偿,如果在2020年5月19日下午5:30以前签订解除劳动合同协议书,格芯还将额外支付1个月工资作为签约奖励。
烂尾现状和格芯母公司有脱不开的关系。
格芯最初是AMD的晶圆制造部门,因经营不善2008年AMD将其卖给了阿联酋的投资公司ATIC,重新组建后的公司就是现在的格芯。
此后的十年中格芯一直处于亏损状态,晶圆制造工艺水平差、良率低,全靠母公司ATIC输血。创立以来,ATIC已经向格芯注资近300亿美元,但格芯净利润一直是负数。掌舵人也在不停更换,不到10年时间换了4任CEO。
成都建厂是第三任CEO Sanjay Jha的决定,格芯先是在2016年与重庆市政府谈判,但同年爆出大规模亏损,谈判未果,后与成都签约。Sanjay Jha发展战略比较激进,除了成都建厂,还新建纽约厂、收购IBM微电子业务、研发7nm,但在任期间亏损非常庞大,创下年均亏损超10亿美元的纪录。
第四任CEO Thomas Caulfield上任后开始大规模砍业务线,与中国的合作也改弦易辙。2018年6月,格芯全球裁员,成都厂招聘暂停;2018年10月,格芯与成都政府签署投资协议修正案,取消了原计划从新加坡引进的180nm/130nm项目。
多方压力之下,格芯成都项目宣布关停。但厂房已经建好,因为设备价格太高且基础设施本身就有问题停摆近17个月无人接盘。如果高真 科技 成功接盘,对成都政府和国内芯片市场或许都是利好。
参考资料:
https://www.laoyaoba.com/html/news/newsdetail?source=pc&news_id=761273
半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。
一、半导体材料主要种类
半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。
1、元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性半导体材料的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态B、Si、Ge、Te具有半导性Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。
(半导体材料)
2、无机化合物半导体:分二元系、三元系、四元系等。 二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有闪锌矿的结构。②Ⅲ-Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In和V族元素P、As、Sb组成,典型的代表为GaAs。它们都具有闪锌矿结构,它们在应用方面仅次于Ge、Si,有很大的发展前途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和Ⅵ族元素S、Se、Te形成的化合物,是一些重要的光电材料。ZnS、CdTe、HgTe具有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素Cu、Ag、Au和 Ⅶ族元素Cl、Br、I形成的化合物,其中CuBr、CuI具有闪锌矿结构。⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族元素 S、Se、Te形成的化合物具有的形式,如Bi2Te3、Bi2Se3、Bi2S3、As2Te3等是重要的温差电材料。⑥第四周期中的B族和过渡族元素Cu、 Zn、Sc、Ti、V、Cr、Mn、Fe、Co、Ni的氧化物,为主要的热敏电阻材料。⑦某些稀土族元素 Sc、Y、Sm、Eu、Yb、Tm与Ⅴ族元素N、As或Ⅵ族元素S、Se、Te形成的化合物。 除这些二元系化合物外还有它们与元素或它们之间的固溶体半导体,例如Si-AlP、Ge-GaAs、InAs-InSb、AlSb-GaSb、InAs-InP、GaAs-GaP等。研究这些固溶体可以在改善单一材料的某些性能或开辟新的应用范围方面起很大作用。
(半导体材料元素结构图)
半导体材料
三元系包括:族:这是由一个Ⅱ族和一个Ⅳ族原子去替代Ⅲ-Ⅴ族中两个Ⅲ族原子所构成的。例如ZnSiP2、ZnGeP2、ZnGeAs2、CdGeAs2、CdSnSe2等。族:这是由一个Ⅰ族和一个Ⅲ族原子去替代Ⅱ-Ⅵ族中两个Ⅱ族原子所构成的, 如 CuGaSe2、AgInTe2、 AgTlTe2、CuInSe2、CuAlS2等。:这是由一个Ⅰ族和一个Ⅴ族原子去替代族中两个Ⅲ族原子所组成,如Cu3AsSe4、Ag3AsTe4、Cu3SbS4、Ag3SbSe4等。此外,还有它的结构基本为闪锌矿的四元系(例如Cu2FeSnS4)和更复杂的无机化合物。
3、有机化合物半导体:已知的有机半导体有几十种,熟知的有萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,它们作为半导体尚未得到应用。
4、非晶态与液态半导体:这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。
二、半导体材料实际运用
制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。
半导体材料所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上,最高达11个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。
(半导体材料)
绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶、大部分锗单晶和锑化铟单晶是用此法生产的,其中硅单晶的最大直径已达300毫米。在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。
在单晶衬底上生长单晶薄膜称为外延。外延的方法有气相、液相、固相、分子束外延等。工业生产使用的主要是化学气相外延,其次是液相外延。金属有机化合物气相外延和分子束外延则用于制备量子阱及超晶格等微结构。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金属等衬底上用不同类型的化学气相沉积、磁控溅射等方法制成。
三、半导体材料发展现状
相对于半导体设备市场,半导体材料市场长期处于配角的位置,但随着芯片出货量增长,材料市场将保持持续增长,并开始摆脱浮华的设备市场所带来的阴影。按销售收入计算,
半导体材料日本保持最大半导体材料市场的地位。然而台湾、ROW、韩国也开始崛起成为重要的市场,材料市场的崛起体现了器件制造业在这些地区的发展。晶圆制造材料市场和封装材料市场双双获得增长,未来增长将趋于缓和,但增长势头仍将保持。
(半导体材料)
美国半导体产业协会(SIA)预测,2008年半导体市场收入将接近2670亿美元,连续第五年实现增长。无独有偶,半导体材料市场也在相同时间内连续改写销售收入和出货量的记录。晶圆制造材料和封装材料均获得了增长,预计今年这两部分市场收入分别为268亿美元和199亿美元。
日本继续保持在半导体材料市场中的领先地位,消耗量占总市场的22%。2004年台湾地区超过了北美地区成为第二大半导体材料市场。北美地区落后于ROW(RestofWorld)和韩国排名第五。ROW包括新加坡、马来西亚、泰国等东南亚国家和地区。许多新的晶圆厂在这些地区投资建设,而且每个地区都具有比北美更坚实的封装基础。
芯片制造材料占半导体材料市场的60%,其中大部分来自硅晶圆。硅晶圆和光掩膜总和占晶圆制造材料的62%。2007年所有晶圆制造材料,除了湿化学试剂、光掩模和溅射靶,都获得了强劲增长,使晶圆制造材料市场总体增长16%。2008年晶圆制造材料市场增长相对平缓,增幅为7%。预计2009年和2010年,增幅分别为9%和6%。
半导体材料市场发生的最重大的变化之一是封装材料市场的崛起。1998年封装材料市场占半导体材料市场的33%,而2008年该份额预计可增至43%。这种变化是由于球栅阵列、芯片级封装和倒装芯片封装中越来越多地使用碾压基底和先进聚合材料。随着产品便携性和功能性对封装提出了更高的要求,预计这些材料将在未来几年内获得更为强劲的增长。此外,金价大幅上涨使引线键合部分在2007年获得36%的增长。
与晶圆制造材料相似,半导体封装材料在未来三年增速也将放缓,2009年和2010年增幅均为5%,分别达到209亿美元和220亿美元。除去金价因素,且碾压衬底不计入统计,实际增长率为2%至3%。
四、半导体材料战略地位
20世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命20世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、 *** 纵和制造功能强大的新型器件与电路,深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式
土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【https://www.to8to.com/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb】,就能免费领取哦~
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)