主要研究方向为扫描隧道显微学、表面物理、自旋电子学、拓扑绝缘量子态和低维超导电性等。
研究工作主要涉及利用扫描隧道显微镜、高/低能电子衍射、光学探针以及各种表面分析手段研究各种金属、半导体表面晶体结构/化学性质、异/同质结薄膜外延和低维纳米结构的生长动力学和控制。在微电子工业上具有广泛用途的化合物半导体GaAs和GaN生长表面的两维晶体结构、光学性质以及相关异质结外延中应力释放问题、InAs/GaAs量子点的形成机理和稳定性、纳米团簇的生长、C60/C84/C70在半导体上的薄膜生长等研究中做过比较系统的工作。主要研究兴趣包括稀磁半导体的分子束外延生长和自旋注入、低维纳米结构的磁性和在自旋电子学中的应用、量子效应对低维纳米结构电子性质的影响(比如催化)等。
长期从事超薄膜材料的制备、表征及其物理性能研究。开展了第二代半导体薄膜GaAs、InAs/GaAs量子阱(点)、宽禁带半导体GaN和ZnO 薄膜生长动力学研究, 发展完善了III-V族化合物半导体表面再构的基本规律;开展了半导体Si衬底上金属超薄膜量子尺寸效应的研究,定量建立了金属薄膜体系量子效应和材料性能间内在联系,发现了薄膜热膨胀系数、功函数、超导转变温度等的量子振荡现象;开展了有序纳米结构的自组织生长研究,发明了若干原子尺度精确控制生长技术,解决了异质外延生长纳米有序结构的难题。研制了几套低温生长及原子尺度原位检测装置。
什么是量子效应?这得从一些基本概念说起。原子模型与量子力学已经用能级的概念进行了合理的解释,由无数原子构成固体时,单独原子的能极就并合成能带,由于电子数目很多,能带中能极的间距很小,因此可看做是连续的。从能带理论出发,物理学家成功地解释了大块金属、半导体、绝缘体之间的联系和区别,对介于原子、分子与大块固体之间的超微颗粒而言,大块材料中连续的能带将分裂为分立的能极,能极间的间距随颗粒尺寸减少而增大。当热能、电场能或者磁场能比平均的能极间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,这就是所谓的“量子效应”。例如,导电的金属在超微颗粒时可以变成绝缘体,磁距的大小与颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子效应的宏观表现。
半导体行业会用到很多化学知识。首先,半导体行业会用到大量的电子化学品。数量众多,对纯度和杂质含量要求很高,是化学品中非常高端的存在。其次,半导体中的集成电路的生产,用到光固化油墨,也就是常说的光刻胶,是各种光敏的化学材料,在光刻机的紫外光作用下,可以固化,刻出复杂的集成电路。其清洗,腐蚀,均离不开化学。第三,形成的半导体要进行封装,也离不开高端的化学材料。因此可以这么说,半导体行业和化学是密不可分的,随着集成电路的发展,集成电路的PN结出现了量子效应,甚至离不开量子化学。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)