第四代半导体材料:以氧化镓(Ga2O3)为代表
作为新型的宽禁带半导体材料,氧化镓(Ga2O3)由于自身的优异性能,凭借其比第三代半导体材料SiC和GaN更宽的禁带,在紫外探测、高频功率器件等领域吸引了越来越多的关注和研究。
氧化镓是一种宽禁带半导体,禁带宽度Eg=4.9eV,其导电性能和发光特性良好,因此,其在光电子器件方面有广阔的应用前景,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。
第四代半导体的发展背景
随着量子信息、人工智能等高新技术的发展,半导体新体系及其微电子等多功能器件技术也在更新迭代。虽然前三代半导体技术持续发展,但也已经逐渐呈现出无法满足新需求的问题,特别是难以同时满足高性能、低成本的要求。
此背景下,人们将目光开始转向拥有小体积、低功耗等优势的第四代半导体。第四代半导体具有优异的物理化学特性、良好的导电性以及发光性能,在功率半导体器件、紫外探测器、气体传感器以及光电子器件领域具有广阔的应用前景。
目前具有发展潜力成为第四代半导体技术的主要材料体系主要包括:窄带隙的锑化镓、铟化砷化合物半导体;超宽带隙的氧化物材料;其他各类低维材料如碳基纳米材料、二维原子晶体材料等。
西安电子科技大学教授郝跃和他带领的宽禁带半导体技术科研团队,依托宽带隙半导体技术国家重点学科实验室,开展宽禁带半导体材料与器件的应用基础研究,实验室已成为国内外宽禁带半导体材料和器件的科学研究、人才培养、学术交流、成果转化方面的重要基地,是西安电子科技大学微电子学与固体电子学国家重点学科、“211工程”重点建设学科和国家集成电路人才培养基地的重要支撑。
敏锐洞察微电子前沿
上世纪,信息科学技术蓬勃兴起,作为信息时代技术基础的集成电路——微电子技术成为大热门。彼时,在微电子领域已崭露头角的郝跃却敏锐地感觉到,传统的微电子技术研究已经遇到了问题。
以硅为半导体材料的集成电路技术基础研究成为关注的核心。一方面,随着集成电路的集成度每18个月翻一番,使半导体器件和材料基础研究高度依赖于工艺条件,高校的优势慢慢丧失;另一方面,随着相关技术产业化和行业市场的迅猛发展,集成电路技术的开发应用已迅速成为企业的天下,高校乃至研究院所都很难成为主导力量。
寻找新的方向,是学术带头人郝跃直觉到的内在要求。他把目光转向化合物半导体,并最终聚焦到国际上刚起步的宽禁带半导体材料——氮化镓、碳化硅。他看到,宽禁带半导体材料研究可以把电子学与光学紧密结合,必然具备单纯的电子学或光学不具备的优势,同时也有很高的学术和应用价值,容易形成先发优势。
2000年前后,郝跃到美国进行学术交流,他留心考察了美国相关研究的最新动态,发现他们的氮化物宽禁带半导体材料研究也还处于起步阶段。这更加坚定了他的决心。回国后,他毅然宣布,全面转向新的研究方向,宽禁带半导体材料与器件。
据实验室的青年教师马佩军回忆说,这无异于一颗重磅炸d,在学院里引起了不小的震动,很多人都无法理解。当时作为郝跃老师的博士研究生,马佩军也觉得非常突然和吃惊。宽禁带半导体是个新鲜事物,没有人能预料它的发展前景。一没有研究基础,二没有经费支持,在马佩军看来,这一新的未知领域充满风险。
尽管争议很大,但是郝跃非常坚决。没有经费筹措经费,没有条件就创造条件,举全力投入。同事和学生们都感叹,郝老师胆识过人,决策果断,他看准的事情绝不拖泥带水。
短短几年的时间就已证明,当初郝跃带领他的团队爬上的这座山头是个宝藏。氮化镓、碳化硅化合物半导体材料,也就是宽禁带半导体材料,很快被定义为“第三代”半导体电子材料,它翻开了世界微电子学科和微电子产业全新的一页。
自主搭建创新平台
刚开始关于宽禁带半导体材料氮化镓的研究,摆在郝跃面前最大的问题是没有材料生长设备。引进一套设备,当时需要700万元到800万元。然而由于没有研究基础,还不能申请国家的经费支持。
怎么办?郝跃决定不等不靠,自己搭建一套设备。他从手中的项目经费中挤出部分经费,又自己垫资,东拼西凑,终于凑到200万元,由此开始了自主研发并搭建材料研制平台的艰苦历程。
用这200万元购买零部件,团队成员自己动手设计与搭建设备。万事开头难,郝跃鼓励大家说,最痛苦的时候,也是最有希望的时候,等日子好过了,我们就要有危机感了。
2002年,在郝跃的领导和指导下,第一代MOCVD(有机化合物化学气相淀积)设备研制成功。当时毕业留校直接参与了设备研发的青年教师张进成,回忆起那段“带着学生从焊板子开始”的往事,感到更多的是成就感。这套后来被张进成笑称为“作坊”式的设备,满足了材料生长、表征、测试等最基本的研究需要,很快就生长出了具有国际先进水平的GaN(氮化镓)基外延材料。团队成功迈出了具有关键意义的第一步。
与此同时,全世界范围内,宽禁带半导体的时代很快到来了。学术界与产业界逐渐认识到,GaN电子器件是制造高功率微波毫米波器件的理想材料,在新一代无线通信、雷达与导航测控等航天、航空平台设备中,具有重大应用前景。只是GaN材料缺陷密度相对较高,这是长期制约GaN电子器件发展的瓶颈。
郝跃带领他的团队系统研究并揭示了GaN电子材料生长中缺陷形成的物理机理,独创性地提出了脉冲式分时输运方法、三维岛状生长与二维平面生长交替的冠状生长方法,显著抑制了缺陷产生。
正是基于这种创新生长方法的固化集成,团队成功建立第一代自主国产化的MOCVD系统和低缺陷材料生长工艺,并于2005年和2007年迅速更新为第二代和第三代,解决了高性能GaN电子材料生长的国际难题,推动了GaN材料生长技术与核心设备的应用。团队自主研发的MOCVD系统及关键技术已成功产业化,应用于GaN半导体微波器件和光电器件制造企业,已累计实现产值2.1亿元。他们自主制备的高性能GaN电子材料自2003年起批量应用于国内多家研究所与大学,以及日本、新加坡等国家的一些科研机构,被国际用户评价为“特性达到了国际前沿水平”。似乎就在朝夕之间,郝跃教授与他的团队一下拿出一批有显示度的成果,震动了整个微电子领域。
成果转化彰显价值
2002年,GaN高亮度蓝光LED器件在郝跃的实验室成功问世。这种新工艺具备传统发光器件不可比拟的节能等优越性。郝跃预测到该项成果巨大的市场潜力,着力推动技术转让与成果转化。
然而事情一开始并不十分顺利,显然这件新事物的价值还不为市场所认识,没有引起足够的重视。郝跃认为,再好的成果,如果“养在深闺人未识”,没有实现其应有的价值,就不能算最后的成功。不等不靠,郝跃决定主要依靠团队自己的力量,将这项成熟的技术尽快转化。
2005年,团队以少额技术股份转让该项成果,以实验室为技术依托,成立西安中为光电科技有限公司,成功实现了蓝绿、紫外LED的产业化。
此外,他们自主建立的国产化GaN微波毫米波功率器件填补了国内空白,打破了发达国家的技术封锁与禁运,已开始试用于多项雷达和测控国家重点工程,推动了我国宽禁带半导体电子器件的跨越发展和应用。
高质量的GaN(氮化镓)和SiC(碳化硅)材料外延片批量提供企业和研究所使用;微波功率器件已经开始用于国家重点工程;GaN的LED成果已经成为陕西省半导体照明的核心技术;微纳米器件可靠性技术对推动我国高可靠集成电路发展发挥了重要作用……随着多项成果应用于国家和国防重点工程,郝跃带领团队的研究工作得到了国内外的广泛关注,科研水平和学术地位不断提升。
在解决国家重大战略需求方面,团队注意到半导体器件可靠性一直是航天、航空等系统中突出的薄弱环节。美国阿里安火箭100多次发射中有过8次失利,其中7次都是由个别器件故障导致的。随着电子系统复杂度的日益提高,器件可靠性问题越来越突出,对我国更是如此。
郝跃多年来一直关注着这个技术难题。从上世纪末开始,团队在他的领导下系统研究了多种半导体器件的退化与失效机理,提出并建立了相应的模型,系统揭示了半导体器件退化与失效的物理本质。该项成果获得了1998年的国家科技进步奖三等奖。
早在2001年,团队首次提出并建立了高可靠性的自对准槽栅半导体器件结构与制造工艺,使器件可靠性提高近2个数量级,被评价为“槽栅器件是一个很有前途的结构,可改善热载流子效应,从而提高器件可靠性”。这项成果成功用于知名集成电路制造商——中芯国际公司高可靠集成电路大生产。该项成果还获得了2008年的国家科技进步奖二等奖。
“微电子不微”,这是郝跃常挂在嘴边的一句话。微电子技术是一个国家核心竞争力的体现,是国家综合国力的标志。他说,作为科研工作者,要承担起自己的使命。
面向未来,郝跃一方面密切关注着学科前沿此起彼伏的热点,一方面反思着团队持续发展中面临的一些自身的问题:数理基础要进一步巩固和加强,创新性思维有待进一步培育,科学的精神、激情与活力需要进一步激发……他似乎总有一种时不我待的紧迫感。
西安电子科技大学南校区一片美丽的草坪上,一座巨石巍然耸立,上书“四海同芯”四个大字雄浑苍劲,似乎诉说着西电微电子人的执著与奋斗,梦想与追求。
1907年Henry Joseph Round 第一次在一块碳化硅里观察到电致发光现象。由于其发出的黄光太暗,不适合实际应用;更难处在于碳化硅与电致发光不能很好的适应,
研究被摒弃了。二十年代晚期Bernhard Gudden和Robert Wichard 在德国使用从锌硫化物与
铜中提炼的的黄磷发光。再一次因发光暗淡而停止。1936年,George Destiau出版了一个关于硫化锌粉末发射光的报告。随着电流的应用和广泛的认识,最终出现
了“电致发光”这个术语。 二十世纪50年代,英国科学家在电致发光的实验中使用半导体
砷化镓发明了第一个具有现代意义的LED,并于60年代面世。据说在早期的试验中,LED需要
放置在液化氮里,更需要进一步的 *** 作与突破以便能高效率的在室温下工作。第一个商用LED仅仅只能发出不可视的红外光,但迅速应用于感应与光电领域。 60年代末,在砷化镓
基体上使用磷化物发明了第一个可见的红光LED。磷化镓的改变使得LED更高效、发出的红光
更亮,甚至产生出橙色的光。 到70年代中期,磷化镓被使用作为发光光源,随后就发出灰
白绿光。LED采用双层磷化镓蕊片(一个红色另一个是绿色)能够发出黄色光。就在此时,
俄国科学家利用金刚砂制造出发出黄光的LED。尽管它不如欧洲的LED高效。但在70年代末,
它能发出纯绿色的光。 80年代早期到中期对砷化镓磷化铝的使用使得第一代高亮度的LED的
诞生,先是红色,接着就是黄色,最后为绿色。到20世纪90年代早期,采用铟铝磷化镓生产
出了桔红、橙、黄和绿光的LED。 第一个有历史意义的蓝光LED也出现在90年代早期,再一
次利用金钢砂―早期的半导体光源的障碍物。依当今的技术标准去衡量,它与俄国以前的黄
光LED一样光源暗淡。90年代中期,出现了超亮度的氮化镓LED,随即又制造出能产生高强度
的绿光和蓝光铟氮镓Led。 超亮度蓝光蕊片是白光LED的核心,在这个发光蕊片上抹上荧光
磷,然后荧光磷通过吸收来自蕊片上的蓝色光源再转化为白光。就是利用这种技术制造出任
何可见颜色的光。今天在LED市场上就能看到生产出来的新奇颜色,如浅绿色和粉红色。 有
科学思想的读者到现在可能会意识到LED的发展经历了一个漫长而曲折的历史过程。事实上
,最近开发的LED不仅能发射出纯紫外光而且能发射出真实的“黑色”紫外光。那么LED发展
史到低能走多远,不得而知。也许某天就能开发出能发X射线的LED。 然而,LED的发展不单
纯是它的颜色还有它的亮度,像计算机一样,遵守摩尔定律的发展。每隔18个月它的亮度就
会增加一倍。早期的LED只能应用于指示灯、早期的计算器显示屏和数码手表。而现在开始
出现在超亮度的领域。将会在接下的一段时间继续下去。例如,到2005年美国所有的交通信
号指示灯将被LED所取代;美国汽车产业也会于十年内停止使用白炽灯而采用LED灯,包括汽车前灯。大多数的大型户外显示屏也采用成千上万个LED以便产生高质量视频效果。
不久,LED将会照亮我们的家、办公室甚至街道。高效节能的LED意味着太阳能充电电池能够
通过太阳光为其冲电。从而能够把光源带到第三世界及其他没有电能的地方。 曾经暗淡的
发光二极管现在真正预示着LED新时代的来临。
LED产业发展前景:
随着全球LED市场需求的进一步加大,未来我国LED产业发展面临巨大机遇。然而,目前LED核心技术和专利基本被国外垄断,国内企业在"快乐"中"痛苦"前行--
2008年,北京奥运会开幕式上,神奇的“画卷”彩屏出自中国金立翔科技有限公司;
2009年,国庆60周年阅兵式,天安门广场上的巨幅彩屏出自中国利亚德电子科技有限公司;
2010年,上海世博会开幕式上,1万平米的半导体发光二极管(LightEmittingDiode,下称LED)大屏幕出自中国锐拓显示技术有限公司……
在这一个个看似风光无限的企业背后,隐藏着中国LED产业发展的巨大隐患。记者采访发现,目前,全球LED领域的技术和专利,一半以上被美、日、德等发达国家的少数大公司所占有。这些专利多为核心技术专利,国内企业尤其是中小企业很难寻找到突破口。此外,这些国外企业已在全球,尤其是中国,精心部署了专利网,犹如头悬一柄达摩克利斯之剑。我国LED产业要想取得长远发展,必须突破这些专利的层层包围。
现状
发展迅速,但企业规模偏小,产业链不完整
作为目前全球最受瞩目的新一代光源,LED因其高亮度、低热量、长寿命、无毒、可回收再利用等优点,被称为是21世纪最有发展前景的绿色照明光源。我国的LED产业起步于20世纪70年代,经过近40年的发展,现已形成上海、大连、南昌、厦门、深圳、扬州和石家庄7个国家半导体照明工程产业化基地,产品广泛应用于景观照明和普通照明领域,我国已成为世界第一大照明电器生产国和第二大照明电器出口国。
然而,LED产业研究机构--集邦LED中国在线(LEDinside)的一份统计数据显示,截至2009年底,我国共有LED企业3000余家,其中,年产值上亿的只有140家。然而,在这140家企业中,没有一家企业的产品年销售额超过10亿元,超过5亿元的也只有少数几家,大部分在1亿元至2亿元之间。可见,虽然我国LED企业数量较多,但规模普遍偏小。
记者在国内随机选择了一家LED企业进行采访。广东东莞勤上光电股份有限公司(下称勤上光电)创建于1993年,是国内较早从事LED产品生产的企业,并与清华大学共同组建了LED照明技术研究院,国内许多项目如国家大剧院照明、北京绿色奥运道路照明、上海F1赛车场照明、清华大学奥运场馆照明等都出自该企业。然而,就是这样一家国内LED产业发展的“探路者”,在遭遇日本、美国、德国的专利“围堵”时,也不得不绕道以避之。
“勤上光电的研发主要集中在下游的应用领域,在上、中游的研发投入相对较少。这主要是因为,国外大公司和我国台湾的一些企业已经垄断了大部分LED核心技术,国内企业只能把目光转向技术含量较低的下游应用市场。”勤上光电知识产权专员万伟在中国知识产权报记者采访时,对国内LED企业的现状直言不讳。
据记者了解,目前全球已初步形成以亚洲、北美、欧洲三大区域为中心的产业格局,以日本的日亚化工、丰田合成,美国的克里、通用电器和德国的欧司朗为专利核心的技术竞争格局。美、日企业在外延片、芯片技术、设备方面具有垄断优势,欧洲企业在应用技术领域优势突出,而我国的LED还处于较低端的水平,80%左右的产品集中在景观照明、交通信号灯等应用市场,在汽车照明、大屏幕等高端产品方面涉及的比较少。
症结
缺乏核心专利,产学研合作松散
“来自日、美、欧的五大国际厂商代表了当今LED的最高水平,对产业发展具有重大影响。这种影响不仅体现在产品和收入上,更重要的是对技术的垄断,50%以上的核心专利都掌握在这五大厂商手中。”一位业内分析师向本报记者介绍。
随着国内LED市场的蓬勃发展,越来越多的国外企业把目光转向中国,尤其近几年,我国受理的LED领域的专利申请数量逐年显著增加。记者在国家知识产权局发展研究中心提供的一份《半导体照明专利风险分析研究报告》中看到,截至2008年底,全球已有22个国家和地区在我国申请了专利,技术优势明显的国家在我国的专利申请比例较高,排名前五位的国家分别是日本、韩国、美国、德国和荷兰。其中,日本以1306件专利申请的数量遥遥领先,占申请总量的24%,其余四国分别占申请总量的7%、5%、4%、和3%。
在有效专利方面,国内专利申请与国外来华专利申请的比例约为4比5。但在这些国内专利申请中,台湾地区占据了大量的份额,其有效发明专利占到了53%。换句话说,如果除去台湾地区,大陆与国外在专利数量、专利含金量方面的差距将会更大。
此外,从产业链的分布来看,国外公司主要在芯片、封装领域的专利布局较多,有一半的LED核心发明在我国提出了专利申请,日亚化工、欧司朗、拉米尔德、克里、通用电气等公司掌握了绝大多数的核心专利技术。其中,日亚化工的核心专利最多,涉及除封装外的所有产业链。
与上述外国公司相比,我国LED专利申请明显处于劣势。据高工LED产业研究所调查,截至2008年底,中国的LED相关专利申请共2.6071万件,其中处于产业中游和下游的封装与应用方面的专利接近50%。尽管我国在电极、微结构、反射层、衬底剥离/健合等方面具有一定优势,但大多属于外围专利,发明专利只占60%,且通过《专利合作条约》(PCT)途径提交的国际专利申请和向国外申请的专利不多。
据了解,我国LED行业除了核心技术竞争力不强之外,产学研结合比较松散也是制约其发展的主要因素。我国的LED专利有很大一部分集中在科研院所,例如,在外延领域,专利拥有量排前三名的分别是中科院半导体所、中科院物理所和北京工业大学;在芯片领域,排前三位的分别是中科院半导体所、北京工业大学和北京大学。与科研院校相比,国内企业申请的实用新型专利较多。
缺乏核心专利、产学研合作松散,已成为悬在中国企业头上的一把达摩克利斯之剑,随之而来的是企业随时面临的专利侵权风险。
“2008年2月,一名美国老妇以专利侵权为由,向美国国际贸易委员会提出申请,要求对日立、三星、东芝等34家企业进行337调查,其中包括广州鸿利光电子有限公司、深圳洲磊电子有限公司等6家中国企业。这一案件为我国LED产业敲响了警钟。”一位业内专家向记者介绍,随着LED市场的进一步扩大,中国企业面临的专利风险将越来越高。
对策
加强自主研发,重视专利的重要作用
北京奥运会、上海世博会等重大赛事活动对LED照明的集中展示让人们对其有了全新的认识,有力推动了中国LED产业的发展。但对国内企业而言,加强自主研发、壮大规模、提高产品质量与技术水平是现阶段的首要任务。
TCL集团股份有限公司知识产权中心专利开发和授权许可部部长王华钧向记者表示:“面对国外公司的‘虎视眈眈’,国内企业更应苦练‘内功’,加大自主创新力度,重点研发能够被市场广泛接受和认可的新技术,并以此为基础,与国外公司展开许可、合作。”
另外,“可以在消化、吸收国外先进技术的基础上,加强模仿创新,通过对竞争对手的核心专利进行改进,提高其技术效果,申请改进型专利,这是规避专利侵权风险的一条有效途径。”国家知识产权局发展研究中心主任毛金生指出。
对此,北京市立方律师事务所律师谢冠斌也表达了相同的看法。他认为,企业要学会合法利用先进技术,跟踪即将到期的专利,签订专利实施许可合同、反垄断许可、交叉许可、授权生产,还可以到专利未覆盖的国家开拓市场。
对于国内企业面临越来越多的知识产权纠纷,尤其是涉外专利诉讼,王华钧建议:“企业在接到跨国公司的专利侵权诉讼时,选择积极应诉才是上策,要学会巧妙运用各国不同的专利制度和法律诉讼程序。”他进一步解释说,以美国为例,利用美国民事诉讼中的证据交换程序,国内企业可以要求原告提供与涉案专利有关的所有技术资料,包括技术秘密。
此外,加强企业与研究机构的产学研合作也是促进我国LED产业快速发展的有效途径。毛金生表示,国内有些研究机构具有一定的研发能力,而有些企业则具有较强的加工制造能力,企业之间、企业与科研机构之间要强化合作意识,促进科研机构的创新成果向企业转移,努力培育一批具有自主知识产权的创新型“龙头”企业。
记者在采访过程中了解到,尽管我国LED产业发展中存在一些问题,但不可否认的是,这一情况目前已有逐渐好转的趋势,而且,我国在衬底、外延、封装以及芯片的部分领域内的优势是不容忽视的,一些科研院所拥有的专利技术世界领先,已经具备了与跨国公司抗衡的能力和实力。
国务院发展研究中心国际技术经济研究所产业安全研究中心主任滕飞向记者表示,我国LED企业的观念在逐渐转变,越来越多的中小企业开始了战略性部署,逐渐重视在知识产权方面的前期积累,学习运用科学技术武装自己,运用专利开拓国内外市场,把一个个“陷阱”变成了良好的市场前景,“有了好的试验田和突破方向,企业应该多总结经验教训,这样才能飞得更高、更远。”
背景链接
什么叫LED?
LED(LightEmittingDiode),中文含义是发光二极管,是一种能够将电能转化为可见光的固态的半导体器件,可以直接把电转化为光,具有体积小、耗电量低、使用寿命长、亮度高、热量低、环保、耐用等特点。主要应用于各种室内、户外显示屏,汽车内部的仪表板、刹车灯、尾灯,电子手表,手机等。
LED产业链包括哪几部分?
LED产业链主要包括4个部分:LED外延片、LED芯片制造、LED器件封装和产品应用,此外,还包括相关配套产业。
一般来说,外延属于LED产业链的上游,芯片属于中游,封装和应用属于下游。上游属于资本、技术密集型的领域,而中游和下游的进入门槛则相对较低。
什么叫LED外延片?
LED外延片生长的基本原理是:在一块加热至适当温度的衬底基片主要有蓝宝石和、SiC、Si上,气态物质InGaAlP有控制的输送到衬底表面,生长出特定单晶薄膜。目前LED外延片生长技术主要采用有机金属化学气相沉积方法。
LED外延片衬底材料是半导体照明产业技术发展的基石。不同的衬底材料,需要不同的LED外延片生长技术、芯片加工技术和器件封装技术,衬底材料决定了半导体照明技术的发展路线。
当前,能用于商品化的衬底只有两种,即蓝宝石和碳化硅,其他诸如GaN、Si、ZnO衬底,还处于研发阶段,离产业化仍有一段距离。
什么是LED芯片?
LED芯片也称为LED发光芯片,是一种固态的半导体器件,其主要功能是:把电能转化为光能,芯片的主要材料为单晶硅。
半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个P-N结。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。
什么叫LED封装?
LED封装是指发光芯片的封装,与集成电路封装有较大不同,不仅要求能够保护灯芯,而且还要能够透光。所以,LED封装对封装材料有特殊要求。
LED封装技术大都是在分立器件封装技术基础上发展演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而LED封装则是完成输出电信号,保护管芯正常工作,输出可见光的功能,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于LED。
LED封装包括引脚式封装、表面贴装封装、功率型封装等多种形式。
LED应用产品包括哪些?
信息显示。电子仪器、设备、家用电器等的信息显示、数码显示和各种显示器以及LED显示屏信息显示、广告、记分牌等。
交通信号灯。城市交通、高速公路、铁路、机场、航海和江河航运用的信号灯等。
汽车用灯。汽车内外灯、转向灯、刹车灯、雾灯、前照灯、车内仪表显示及照明等。
LED背光源。小尺寸背光源:小于10英寸,主要用于手机、MP3、MP4、PDA、数码相机、摄像机和健身器材等;中等尺寸背光源:10英寸至20英寸之间,主要用于手提电脑、计算机显示器和各种监视器;大尺寸背光源:大于20英寸,主要用于彩色电视的显示屏。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)