第三代半导体材料爆发!氮化镓站上最强风口

第三代半导体材料爆发!氮化镓站上最强风口,第1张

随着市场对半导体性能的要求不断提高,第三代半导体等新型化合物材料凭借其性能优势开始崭露头角,成为行业未来重要增长点。

相对于第一代(硅基)半导体,第三代半导体禁带宽度大,电导率高、热导率高。第三代半导体的禁带宽度是第一代和第二代半导体禁带宽度的近3倍,具有更强的耐高压、高功率能力。

氮化镓(GaN)和碳化硅(SiC)并称为第三代半导体材料的双雄,由于性能不同,二者的应用领域也不相同。

氮化镓、高电流密度等优势,可显著减少电力损耗和散热负载,迅速应用于变频器、稳压器、变压器、无线充电等领域,是未来最具增长潜质的化合物半导体。

与GaAs和InP等高频工艺相比,氮化镓器件输出的功率更大;与LDCMOS和SiC等功率工艺相比,氮化镓的频率特性更好。

随着行业大规模商用,GaN生产成本有望迅速下降,进一步刺激GaN器件渗透,有望成为消费电子领域下一个杀手级应用。

GaN主要应用于生产功率器件,目前氮化镓器件有三分之二应用于军工电子,如军事通讯、电子干扰、雷达等领域。

在民用领域,氮化镓主要被应用于通讯基站、功率器件等领域。氮化镓基站PA的功放效率较其他材料更高,因而能节省大量电能,且其可以几乎覆盖无线通讯的所有频段,功率密度大,能够减少基站体积和质量。

氮化镓在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。随着5G高频通信的商业化,GaN将在电信宏基站、真空管在雷达和航空电子应用中占有更多份额。

根据Yole估计,大多数Sub 6GHz的蜂窝网络都将采用氮化镓器件,因为LDMOS无法承受如此之高的频率,而砷化镓对于高功率应用又非理想之选。

同时,由于较高的频率会降低每个基站的覆盖范围,需要安装更多的晶体管,因此市场规模将迅速扩大。

Yole预测,GaN器件收入目前占整个市场20%左右,到2025年将占到50%以上,氮化镓功率器件规模有望达到4.5亿美元。

从产业链方面来看,氮化镓分为衬底、外延片和器件环节。

尽管碳化硅被更多地作为衬底材料(相较于氮化镓),国内仍有从事氮化镓单晶生长的企业,主要有苏州纳维、东莞中镓、上海镓特和芯元基等。

从事氮化镓外延片的国内厂商主要有三安光电、赛微电子、海陆重工、晶湛半导体、江苏能华、英诺赛科等。

从事氮化镓器件的厂商主要有三安光电、闻泰 科技 、赛微电子、聚灿光电、乾照光电等。

GaN技术的难点在于晶圆制备工艺,欧美日在此方面优势明显。由于将GaN晶体熔融所需气压极高,须采用外延技术生长GaN晶体来制备晶圆。

其中日本住友电工是全球最大GaN晶圆生产商,占据了90%以上的市场份额。GaN全球产能集中于IDM厂商,逐渐向垂直分工合作模式转变。美国Qorvo、日本住友电工、中国苏州能讯等均以IDM模式运营。

近年来随着产品和市场的多样化,开始呈现设计业与制造业分工的合作模式。

尤其在GaN电力电子器件市场,由于中国台湾地区的台积电公司和世界先进公司开放了代工产能,美国Transphorm、EPC、Navitas、加拿大GaN Systems等设计企业开始涌现。

在射频器件领域,目前LDMOS(横向扩散金属氧化物半导体)、GaAs(砷化镓)、GaN(氮化镓)三者占比相差不大,但据Yoledevelopment预测,至2025年,砷化镓市场份额基本维持不变的情况下,氮化镓有望替代大部分LDMOS份额,占据射频器件市场约50%的份额。

GaAs芯片已广泛应用于手机/WiFi等消费品电子领域,GaN PA具有最高功率、增益和效率,但成本相对较高、工艺成熟度略低,目前在近距离信号传输和军工电子方面应用较多。

经过多年的发展,国内拥有昂瑞微、华为海思、紫光展锐、卓胜微、唯捷创芯等20多家射频有源器件供应商。

根据2019年底昂瑞微董事长发表的题为《全球5G射频前端发展趋势和中国公司的应对之策》的报告显示,截至报告日,国内厂家在2G/3G市场占有率高达95%;在4G方面有30%的占有率,产品以中低端为主,销售额占比仅有10%。

目前我国半导体领域为中美 科技 等领域摩擦中的卡脖子方向,是中国 科技 崛起不可回避的环节,产业链高自主、高可控仍是未来的重点方向。第三代半导体相对硅基半导体偏低投入、较小差距有望得到重点支持,并具备弯道超车的可能。

什么是LED灯啊?

所谓的 LED 灯具,顾名思义,是指灯具产品采用 LED (Light-emitting Diode,发光二极管) 技术做为主要的发光源。LED 灯具的灯泡体积小、重量轻,,不易破碎,且亮度衰减周期长,使用寿命可长达 50,000-100,000小时,远超过传统钨丝灯泡的 1,000 小时及萤光灯管的10,000 小时。由于 LED 灯具的使用年限可达 5 ~10 年,所以不仅可大幅降低灯具替换的成本,又因其具有极小电流即可驱动发光的特质, LED 也同时拥有省电与节能的优点。要深入了解可以去淘宝店铺的 “极浦LED照明”cjp158.taobao看看。那边有很多LED产品。可以对照看看。

LED灯的优点是什么?

LED特点和优点 LED的内在特征决定了它是最理想的光源去代替传统的光源,它有着广泛的用途. 体积小 LED基本上是一块很小的晶片被封装在环氧树脂里面,所以它非常的小,非常的轻. 耗电量低 LED耗电非常低,一般来说LED的工作电压是2-3.6V.工作电流是0.02-0.03A.这就是说:它消耗的电不超过0.1W. 使用寿命长 在恰当的电流和电压下,LED的使用寿命可达10万小时 高亮度、低热量 环保 LED是由无毒的材料作成,不像荧光灯含水银会造成污染,同时LED也可以回收再利用. 坚固耐用 LED是被完全的封装在环氧树脂里面,它比灯泡和荧光灯管都坚固.灯体内也没有松动的部分,这些特点使得LED可以说是不易损坏的.。

什么是LED灯?

LED(Light Emitting Diode,简称LED,中文名称叫发光二极管。)灯带是指把LED组装在带状的FPC(柔性线路板)或PCB硬板上,因其产品形状象一条带子一样而得名。

LED灯带的特点

1.坚硬,能像步话机一样卷曲。

2.可以剪切和延接。

3.电灯泡与通路被彻底包覆正在柔性塑胶中,绝缘、防水功能好,运用保险。

4.耐气象性强。

5.没有易决裂、运用寿数长。

6.易于制造图形、文字等造型;眼前已被宽泛使用正在建造物、桥梁、途径、花园、庭院、地层、谎花板、家俱、公共汽车、湖泊、水底、海报、粉牌、标志等上粉饰和照亮。

LED灯是谁发明的?

检举在1955年时,美国无线电公司(Radio Corporation of America)的Rubin Braunstein发现了砷化镓(GaAs)与及其他半导体合金的红外线放射作用,而1962年美国通用电气公司(GE)的Nick Holonyak Jr则开发出可见光的LED.不过,LED真正的起飞是在1990年代日本日亚 (Nichia Chemical Industries Ltd.)的中村修二(Shuji Nakamura) 于1994年和1995年,在氮化镓(GaN)研究方面获得重大突破,获得了蓝光LED,继蓝光LED技术突破后,白光LED正式启动了广泛的LED应用的时代.。

LED灯是什么?

LED灯有好多种有led照明灯 led灯带 led灯杯 求购led灯 led节能灯 led装饰灯 led地埋灯 led轮廓灯 led投光灯 。

。 一、LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。

LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 LED结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。

在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。

这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。 当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。

二、LED光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50% 5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7. 颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。

如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色 8. 价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成。 三、单色光LED的种类及其发展历史 最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。

当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。

到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。

在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿 *** 域(λp=530nm)的光效可以达到50流明/瓦。 四、单色光LED的应用 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。

以12英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。

而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。

1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。 另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。

五、白光LED的开发 对于一般照明而言,人们更需要白色的光源。1998年发白光的LED开发成功。

这种LED是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含Ce3+的YAG荧光粉受此蓝光激发后发出黄色光发射,峰值550nm。

蓝光LED基片安装在碗形反射腔中,覆盖以混有YAG的树脂薄层,约200-500nm。 LED基片发出的蓝光部分被荧光粉吸收,另一部分蓝光与荧光粉发出的黄光混合,可以得到得白光。

现在,对于InGaN/YAG白色LED,通过改变YAG荧光粉的化学组成和调节荧光粉层的厚度,可以获得色温3500-10000K的各色白光。(如下图所示) 表一列出了目前白色LED的种类及其发光原理。

目前已商品化的第一种产品为蓝光单晶片加上YAG黄色荧光粉,其最好的发光效率约为25流明/瓦,YAG多为日本日亚公司的进口,价格在2000元/公斤;第二种是日本住友电工亦开发出以ZnSe为材料的白光LED,不过发光效率较差。 从表中也可以看出某些种类的白色LED光源离不开四种荧光粉:即三基色稀土红、绿、蓝粉和石榴石结构的黄色粉,在未来较被看好的是三波长光,即以无机紫外光晶片加R.G.B三颜色荧光粉,用于封装LED白光,预计三波长白光LED今年有商品化的机机会。

但此处三基色荧光粉的粒度要求比较小,稳定性要求也高。

慢慢看吧LED发展起来还是需要一些时间的应该比较贵还有一个是一般说的寿命啊什么的都是理论数据不是实际数据

一、LED的结构及发光原理

50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。

LED是英文lightemittingdiode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。

LED结构图如下图所示

发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。

在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。

PN结加反向电压,少数载流子难以注入,故不发光。

这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。

当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。

二、LED光源的特点

1.电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。

2.效能:消耗能量较同光效的白炽灯减少80%

3.适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境

4.稳定性:10万小时,光衰为初始的50%(注:这些都是理论数据,实际有许多情况影响具体说不完)

5.响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级

6.对环境污染:无有害金属汞

7.颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。

如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色

8.价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成。

三、单色光LED的种类及其发展历史

最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。

当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。

70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。

到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。

90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。

在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿 *** 域(λp=530nm)的光效可以达到50流明/瓦。

四、单色光LED的应用

最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。

以12英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。

经红色滤光片后,光损失90%,只剩下200流明的红光。

而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。

汽车信号灯也是LED光源应用的重要领域。

1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。

另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。

五、白光LED的开发

对于一般照明而言,人们更需要白色的光源。

1998年发白光的LED开发成功。

这种LED是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。

GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含Ce3+的YAG荧光粉受此蓝光激发后发出黄色光发射,峰值550nm。

蓝光LED基片安装在碗形反射腔中,覆盖以混有YAG的树脂薄层,约200-500nm。

LED基片发出的蓝光部分被荧光粉吸收,另一部分蓝光与荧光粉发出的黄光混合,可以得到得白光。

现在,对于InGaN/YAG白色LED,通过改变YAG荧光粉的化学组成和调节荧光粉层的厚度,可以获得色温3500-10000K的各色白光。

(如下图所示)

表一列出了目前白色LED的种类及其发光原理。

目前已商品化的第一种产品为蓝光单晶片加上YAG黄色荧光粉,其最好的发光效率约为25流明/瓦,YAG多为日本日亚公司的进口,价格在2000元/公斤;第二种是日本住友电工亦开发出以ZnSe为材料的白光LED,不过发光效率较差。

从表中也可以看出某些种类的白色LED光源离不开四种荧光粉:即三基色稀土红、绿、蓝粉和石榴石结构的黄色粉,在未来较被看好的是三波长光,即以无机紫外光晶片加R.G.B三颜色荧光粉,用于封装LED白光,预计三波长白光LED今年有商品化的机机会。

但此处三基色荧光粉的粒度要求比较小,稳定性要求也高,具体应用方面还在探索之中。

表一白色LED的种类和原理

芯片数

激发源

发光材料

发光原理

1

蓝色LED

InGaN/YAG

InGaN的蓝光与YAG的黄光混合成白光

蓝色LED

InGaN/荧光粉

InGaN的蓝光激发的红绿蓝三基色荧光粉发白光

蓝色LED

ZnSe

由薄膜层发出的蓝光和在基板上激发出的黄光混色成白光

紫外LED

InGaN/荧光粉

InGaN的紫外激发的红绿蓝三基色荧光粉发白光

2

蓝色LED

黄绿LED

InGaN、GaP

将具有补色关系的两种芯片封装在一起,构成白色LED

3

蓝色LED

绿色LED

红色LED

InGaN

AlInGaP

将发三原色的三种小片封装在一起,构成白色LED

多个

多种光色的LED

InGaN、GaP

AlInGaP

将遍布可见光区的多种光芯片封装在一起,构成白色LED

采用LED光源进行照明,首先取代耗电的白炽灯,然后逐步向整个照明市场进军,将会节约大量的电能。

近期,白色LED已达到单颗用电超过1瓦,光输出25流明,也增大了它的实用性。

表二和表三列出了白色LED的效能进展。

表二单颗白色LED的效能进展

年份

发光效能(流明/瓦)

备注

1998

5

199

15

相若白炽灯

2001

25

相若卤钨灯

2005

50

估计

表三长远发展目标

单颗白色LED

输入功率

10瓦

发光效能

100流明/瓦

输出光能

1000流明/瓦

六、业界概况

在LED业者中,日亚化学是最早运用上述技术工艺研发出不同波长的高亮度LED,以及蓝紫光半导体激光(LaserDiode;LD),是业界握有蓝光LED专利权的重量级业者。

在日亚化学取得兰色LED生产及电极构造等众多基本专利后,坚持不对外提供授权,仅采自行生产策略,意图独占市场,使得蓝光LED价格高昂。

但其他已具备生产能力的业者相当不以为然,部分日系LED业者认为,日亚化工的策略,将使日本在蓝光及白光LED竞争中,逐步被欧美及其他国家的LED业者抢得先机,届时将对整体日本LED产业造成严重伤害。

因此许多业者便千方百计进行蓝光LED的研发生产。

目前除日亚化学和住友电工外,还有丰田合成、罗沐、东芝和夏普,美商Cree,全球3大照明厂奇异、飞利浦、欧司朗以及HP、Siemens、Research、EMCORE等都投入了该产品的研发生产,对促进白光LED产品的产业化、市场化方面起到了积极的促进作用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9196978.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存