从下面的时间节点你会发现,可能下一代的芯片就会使用碳基!
2019年5月26日,北京元芯碳基集成电路研究院宣布,解决了长期困扰碳基半导体材料制备的瓶颈!
2019年,中科院研究所的殷华湘团队公布:他们已经成功研发出相等于人类DNA的宽度的3nm晶体管。
2020年5月,北京元芯碳基集成电路研究院宣布,中国科学院院士北京大学教授彭练矛和张志勇教授带领的团队,解决了碳基半导体材料制备的瓶颈,如材料的纯度、密度与面积问题。
这意味着接下来制造芯片不一定要采用硅了,而可以使用碳来制造了,也就是碳基芯片了。
所谓的碳基半导体,它的成本更低、功耗更小、效率更高。它是一种有别于现在芯片的硅材料,因此突破这种材料的限制,对于我们的芯片未来确实非常有帮助。
未来它将使用在多种设备上,比如说手机芯片,计算机芯片等等方面,甚至碳基技术芯片可能让我们的手机更流畅,电池更耐用。
碳基芯片,资料已经介绍了,效率比硅基芯片高,性能比硅基芯片好。如果是这样子,根据科学发展的规律,在不久的将来就能由碳基芯片替代硅基芯片。新技术的出现,不可能一下子就能赶上旧技术的水平,但是新技术会逐步完善并超过旧技术的。先前就有很多的例子:先说火车刚制造出来第一次开动的时候,据说还没有骑着马跑的快呢!骑着马和火车比赛的人们,都嘲笑火车的笨重和慢。再说显示器吧,开始是电子管显示器一家独霸天下,后来又出现了液晶显示器,当时有不少人认为液晶显示器成不了气候,不可能压过和替代电子管显示器,现在怎样啦!有目共睹吧!我们要有研究新事物、接受新事物的科学心态,不断 探索 、勇于创新,我相信,只要是碳基芯片的性能比硅基芯片的性能好,就会超过和替代硅基芯片!只是时间长短而已。
估计5年以后,也许10年或更长时间也难讲
碳基芯片的进度
碳基芯片其实已经研发了20多年了,1991年就发布了碳晶体管。但如果利用碳晶体管,科学界这20多年以来,就一直在研发这个问题。
从制备、提纯开始,一直到排列碳纳米管的方法,这一研究就是20多年呢,直到今年北大团队的研究成果,可以不再停留在实验室里了,让碳基芯片有了开始谈论规模产业化了的基础了。
但事实上从可开始生产到真正成为产业,这中间还会有10年甚至20年更长时间,毕竟产业链会涉及到材料、技术工艺,再到工种设备等等,这些上、下游都得跟上啊。
另外还可以给大家一个参考,按照北大团队的说法,他们的下一个目标,是在2-3年内完成90纳米碳基CMOS工艺开发。
大家看清楚了,2-3年内完全成90nm工艺的开发,而这90nm的碳基芯片,按照理论数据,相当于28nm的硅基芯片性能。
而28nm的硅基芯片,中芯国际在2015年就实现了量产,相当于一切顺利,碳基芯片其实至少也是落后10多年的。
所以真的碳基芯片要使用到具体的生产中来,没有个5年10年,是不太可能的,所以短时间内就不要期待了。
碳基芯片的前沿 科技 估计已经可以做出来了。只是性能和造价的问题,估计586的水平的碳基推上市场意义并不大。目前的碳基基本还是在沿用硅基的路子。我认为这在一定程度上局限了碳基芯片领域的发展。
我认为,硅基技术目前已经到了一定的瓶颈期。由于光的波粒二象性,为了让光呈现粒子态,就必须有观察者的存在。这也就是说,硅基芯片的加工基础光刻技术再向前发展也许需要量子学科实用化的突破。
而碳基技术,完全有可能走向另外一个 科技 树。通过生物技术实现功能逻辑单元的构建。虽然是有点科幻,但是哪像科学不是由科幻开始的呢?众所周知,病毒进入细胞之后就会,通过细胞核的物质进行自我复制。大自然中数量最庞大的病毒就是噬菌体,每种噬菌体通常只感染一种真核或原核生物。如果病毒的一系列基因片段可以作为某种计算结构的计算核心功能单元。多重片段组合起来行程一个活体的共生群落。原始构建稳定之后,一种生物性的计算细胞单元就可能改变人类。一个细胞就是一颗超高运算能力的CPU,而且会自我复制,一个生命周期到了,另外一个就分裂合成完毕了。
也许有人会把现在我发表的这个看成疯子。但我要说谁又能预测为了 科技 真正发展的脉络呢!如果生物碳基芯片问世,如今的人类也许就被融合了生物碳基芯片的新人类所取代。这一切谁又说得准呢?
如果只是硅基芯片发展路线的延续,碳基芯片的量产估计也就在5年之内。但如果换一个 科技 树,短则50年,长则上百年。
谁要用这个电子写科幻作品,可以联合署名吗?
1947年贝尔实验室演示了基于锗的半导体晶体管,开启了信息时代的新篇章。紧随其后的硅晶体管在1954年问世,很快就成为了集成电路技术的主流。历经60多年,“摩尔定律”已经被硅基芯片跑得奄奄一息。很多人开始提出疑问芯片是否应该在材料学上来一次“换道”,才能根本性地解决当下整个芯片产业的现状。
在硅基芯片不断试图在单位面积内容纳下更多的晶体管来提高芯片的性能的时候,人们一直也没有停下 探索 新材料的步伐,碳的优越特性成为了最佳选择,更为重要的是碳基芯片制造不需要经历硅基芯片抛光、光刻、蚀刻、离子注入等等一系列复杂工艺。
什么是碳基芯片?我们都知道芯片中的晶体管就是半导体,我们不妨来看看它的结构。栅极和沟道区域之间有一层高K节电材质(绝缘层),通过施加在栅极的电压在沟道区域产生电场,从而切断电流的流动,控制沟道的导通和关断。栅极和沟道区域有一层绝缘层,最早这层绝缘层是用二氧化硅来构成,随着晶体管尺寸的缩小,绝缘层就变得越来越薄了,这样就可以通过更小的电压来控制电流,从而降低能耗。但绝缘层太薄,随之而来的就是量子隧穿效应,电子能够轻易透过它,所以后面就使用了具有较高介电常数的材料(比如二氧化铪)来作为绝缘层。
碳基芯片是利用单个碳纳米管或者碳纳米管阵列作为沟道材料,它允许电子从源极流到漏极。源极和漏极也不再掺杂硅,而是改用特殊的金属,利用金属与碳纳米管之间的结电压来制作晶体管。比如N型碳晶体管使用活性金属钪或钇来作为漏极,P型碳晶体管使用惰性金属钯作为源极。
硅晶体管为了克服固有缺陷所以不得不朝着三维立体结构不断演化来克服量子隧穿效应,而碳基晶体管一开始就是三维模型,每一个碳纳米管的直径为1nm,它比硅基晶体管更容易实现更小尺寸,而2nm或已经达到了硅晶体管的极限了。另外碳纳米管不管是电子的传导速度还是热传递性能都是硅的成百上千倍,但功耗却是硅晶体管的十分之一。
碳基芯片离商用还很远基于碳的N型半导体、P型半导体已经有了,碳纳米管场效应晶体管也有了。在《自然》、《科学》杂志上也曾出现了多篇碳晶体管的论文。IBM为首的众多科研团队一直在研究碳纳米管技术,2017年北大的科研团队最早实现5nm级碳晶体管元器件。为了推动碳纳米管电路的可行性MIT研究团队甚至发布了全球首个超过14000个碳纳米晶体管的通用计算芯片。
实际上碳基芯片上世纪就已经提出来了,并且被预言未来最终会取代硅基芯片,但直到现在还没有实现。碳基芯片性能确实超越了同规格的硅基芯片,但制作工艺还远远不如硅基芯片成熟。大家都是摸着石头过河的架势,我国属于比较超前的位置,一旦有所突破,将来可能不是弯道超车,而是直道超越。我国甚至将碳基材料纳入国家原材料工业“十四五”规划,近几年更是涌现了很多碳基芯片相关企业。
碳基芯片商用很远,但碳基芯片的未来确实很值得期待。
以上个人浅见,欢迎批评指正。
感觉很难,我理解最大的问题是效果能比硅好多少,以及成本能降低多少,还有工艺的可行性。
碳和硅都是半导体材料,芯片也都是基于晶体管制成的,理论上单壁碳管的迁移率比硅高,但在大规模制造时,很难说,碳管和硅还不一样,不太能用传统提拉法制造大的超纯单晶硅然后切割成硅片,然后一个个构造出晶体管。因为单晶硅的非常高的均匀性,所以每个器件性质都一样。但碳管很可能是自下而上方法,先做成很多碳管,再组装成器件。这组装一定程度上限制了碳管的性能均匀性,而这对超大规模集成电路影响很大。没有办法做到超大规模均匀,基本上不可能商用。即便做出芯片,性质也比单独碳管的要低很多,这能不能比现有的硅芯片更好就很难说了。
成本上,碳管提纯难度应该很大,尤其是要做的五个九以上,而且还要考虑属性,层数,手性,以及每根碳管的长度均匀性,复杂的提纯技术绝对会让成本大范围提高,虽然目前做碳管研究不计成本,可是要商用成本肯定是第一要素。
最后一直觉得工艺上很难实现,碳管太脆弱了,尤其是单壁管,任何的等离子加工,镀膜,刻饰都会对碳管造成破坏,这需要开发非常多的极其温和的加工技术,而这目前很难,尤其在小尺寸下,几个nm范围内。
一个新的技术出来,不是说他研究出来了就能用的,实验室产品和工业生产之间还还距离十万八千里。还有最重要的生态建立,这需要时间和金钱的堆积与投入,没有成熟的生态,那就是噱头
事实上,碳基半导体晶体管最先是由美国与荷兰科学家在1998年制造出来的,截止到2006年之前,我国在碳纳米管晶体管上并没有明显的建树。可以说,我国对碳纳米管晶体管的研究开始于2000年,7年之后才制备出了性能超越硅晶体管的N型碳纳米管晶体管。由此可知,国外的碳纳米管晶体管的研究要比我们早的多,但是到了今天我们与国外的差距远没有硅晶体管那么大,甚至有超越国外的趋势。
总体而言,国外对碳纳米管晶体管的研究,还是比我们要领先的。在2013年,MIT研究团队发表了由178个晶体管组成的只能执行简单指令的碳纳米管计算机。在2019年,MIT团队已能制造完整的由14000个碳纳米管晶体管组成的处理器了。而国内于2017年制造了基于2500个碳纳米管晶体管的处理器,整体性能相当于因特尔4004的水平。至于在2019年国内是否研发出了集成更多碳纳米管晶体管的处理器,目前尚未有报道。
由于碳纳米管较容易聚合在一起,所以MIT团队利用了一种剥落工艺防止碳纳米管聚合在一起,以防晶体管无法正常工作。要知道MIT团队制造的CPU主频只有1Mhz,早期的80386处理器的频率还有16Mhz,也不是说2019年碳纳米管制造的计算机性能,仅相当于1985年制造的硅晶体管处理器的性能,这差距就太大了。离实用化,还有较长的一段路要走。因为碳纳米管晶体管之间的沟道和碳纳米管晶体管的体积过大,导致碳纳米管晶体管可以容纳的电流较小,容纳得电荷较少。MIT制造的由14000个碳纳米管晶体管组成的处理器中的沟道宽度为1.5微米,与现在纳米级相距较远。也只有缩小碳纳米管晶体管的体积和减小沟道的距离,才可以提升整体性能。
但是国内于2017年,就研制出了栅长为5纳米的碳纳米管晶体管,近日又研发出了栅长3纳米的碳纳米管晶体管。可以说,国内在碳纳米管晶体管的小型化上走的比较远。在2007年左右,国内以碳纳米管晶体管制造的处理器主频就高达5Ghz,要比国外2019年制造等我处理器主频高的多。从国外的相关产品来看,其碳纳米管栅长究竟达到了何种地步,也说不准。只不过,由此可知,在碳纳米管的研发上,国内技术最起码不会差国外技术太多,很有可能是同步发展的。
【碳基半导体芯片真的能够助力我国芯片突破西方禁锢?从此不依赖ASML吗?】
我们应该看到了近期的新闻,2020年5月26日,北京元芯碳基集成电路研究院宣布,解决了长期困扰碳基半导体材料制备的瓶颈! 该消息一出,瞬间引起了我们的关注,于是我们扎堆的认为, 碳基半导体芯片一定能够助力我国芯片的突破,打破西方禁锢?从此不依赖ASML。
了解现状——西方国家垄断的是硅基材料,而这些硅基材料在我国,我们的优势非常的低;一些关键性的材料还是倍国家技术给垄断的。而此时,我们想要打破束缚,就必须要寻找新的思路,于是出现了我们期待的:碳基半导体能否替代未来的硅基材料呢?
其实,有专家表示,北由于碳分子结构稳定,很难像硅材料一样通过掺杂其他物质改变性能。因此,碳纳米管要实现产业化,尚有很长一段路要走。不过,如今,北京元芯碳基集成电路研究院的突破确实给了我们很大的希望。
碳基半导体具有成本更低、功耗更小、效率更高。如果能够打破硅基半导体材料的束缚,走出一条全新的碳基半导体路,我们的芯片发展可能更有意义。
其实,以碳纤维(织物)或碳化硅等陶瓷纤维(织物)为增强体,实际上,我们熟知的石墨烯,生物碳以及碳纳米管等等都属于碳基材料。因此,想要碳基材料真正的运用与我们的实际,确实还是有一段路走,可是我们也已经进了一步了。
在芯片处理中, 碳基技术芯片 速度提升,功耗降低,未来更能够运用于多种领域,比如国防,气象,以及我们现在急需要解决的手机芯片,计算机芯片问题。这里我们得知道,相比国外技术, 我国对于碳基技术研究时间早,目前的技术是基于二十年前彭练矛院士提出的无掺杂碳基CMOS技术发展而来。
因此,我们不担心倍国外的技术给限制,因为我们的技术具有前瞻性,确实我们的芯片技术目前还是受限制,特别是ASML的光刻机,因为缺乏技术,在工艺制程方面受到制约。
因此,我们猜测的是,碳基材料未来很有可能打破ASML光刻机的束缚,打破欧美国家芯片的束缚,打造属于我们的芯片技术。
谢谢您的问题。碳基芯片在全球范围内还在朝量产迈进。
碳基芯片目前处于实验室阶段。 IBM和英特尔已经碳基在理论进行了多年的 探索 ,英特尔无果而放弃。IBM与英特尔退而求其次,用的是“掺杂”工艺制备碳纳米管晶体管。在国内,彭练矛和张志勇教授团队在半导体碳碳基半导体材料制备方面取得了研究重大进展,已经领先于全球,但也只是朝产业化进一步迈进。
实验室的成果离现实还很远 。全球碳基芯片真正要实现落地、商品化,除了雄厚的资金,必须要有现有的芯片兼容,直接借用现有半导体产业流程工艺,就可以大大加快碳基芯片产业化进程。
碳基技术需要企业参与 。北京碳基集成电路研究院以前在碳基技术上走在了前列,未来10年发展至少需要20亿元研发投入,这需要企业产研对接,需要企业认识其中的价值。阿里巴巴、腾讯都计划投入数千亿元用于新基建,参与到云服务和芯片全线布局,希望这样的 科技 龙头企业参与“碳基”集成电路,有助于缩短国内碳基技术的商用时间,站在全球视角, 科技 企业及早介入非常重要。
欢迎关注,批评指正。
首先,国外的研究并没有啥进展,因为没有企业投钱,高通的芯片利润这么高,谁会把大把的钱投到一个还不知道成不成功的项目上?
处于 探索 期,技术还远不成熟,距成熟产品路还很远。
碳基芯片毕竟停留在实验室,商业前景不明朗,至少在未来5到7年里,或者说没有庞大的市场需求驱动,企业应该没有什么动力去为碳基芯片的商业应用进行大量投入。简而言之,没有真正引发全球业界强烈的共鸣,一个巴掌拍不响的。
▲2018至2025年,各制程工艺在台积电营收中的贡献变化
当前半导体行业中的光刻机、EDA软件设计工具、测试仪器、生产工艺流程等是否可用于制造碳基芯片?彭练矛院士说:“使用率大约能达到80%~90%,但碳管材料的清洗、刻蚀等步骤需要特殊处理,碳管器件的模型需要单独建立。”换言之,当硅基芯片在工艺上达到极限、再也无法突破,转而投向碳基芯片,那么业界要推动碳基芯片继续缩小节点,还必须要仰赖其他环节。例如光刻机,光刻机在硅基半导体晶圆制造成本中可是占到大约一半。
一方面,中国(包括政府、科研机构和企业等在内)围绕硅基芯片总计投入的人力、物力和财力非常之大,涉及原材料、半导体机台设备、开发设计、生产制造、封装测试等几乎所有环节,从国家层面考虑,目的不外乎是尽可能缩小与国际领先之间的差距,同时为培育出大量本土人才创造条件。中国在集成电路领域投入如此之大,尚没有好好消化、完全吃透,实现应有的回报。但另一方面,中国半导体产业在原材料、半导体生产设备、软件设计工具等环节相对滞后也是事实,而且高度依赖国外厂商。最致命的还是,高端专业人才稀缺,仍需大量引进。在此情况下,就算中国本土半导体上中下游企业肯齐心协力转向碳基芯片,希望抢先国外一步实现所谓的“弯道超车”,也不能不考虑各种可能的风险。例如,华为与台积电本来合作得非常愉快,但美国企图彻底阻止台积电为华为代工芯片。
况且,彭练矛院士自己也说:“现代芯片制备有上千个步骤,其中一步做不好,就没有好的产品。最后是一个系统优化的问题,材料、器件、芯片设计等密不可分。”
另外,彭练矛教授还说过:“碳纳米管的制造乃至商用,面临最大的问题还是决心,国家的决心。若国家拿出支持传统集成电路技术的支持力度,加上产业界全力支持,3-5年应当能有商业碳基芯片出现,10年以内碳基芯片开始进入高端、主流应用。”
根据已公开的信息(碳基的一些优势在此省去不说了),碳基芯片是半导体产业的方向之一,但不能确定就是技术发展的唯一必然方向。不过,业界确实可以从最简单的商业应用开始尝试做起,从简单到复杂,从低端到高端,从小范围到大范围,从专业特定领域到全范围推广。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)