C1表示CLK是编号为1的一个控制信号(因为没有小圆圈,表示高电平有效, 即CLK=1时触发器输出端才受输入信号的控制 )
1S和1R表示受C1控制的两个输入信号
·只要有一个输入信号为低电平,与非门的输出均为高电平
·该电路结构实际由G3、G4组成的输入控制电路和G1、G2组成的SR锁存器组成
目的:可以在CLK的有效电平来之前预先将触发器置成指定的状态
其中, '称为 异步置0输入端(异步复位端) , ‘称为 异步置1输入端(异步置位端) 。
只要 ‘或 ‘置低电平,就可以立即使触发器置1或置0,不受时钟信号的控制。
· 在CLK=1的全部时间里,S和R状态的变化都可能引起输出状态的变化 。在CLK回到0以后,触发器保存的是 CLK回到0以前瞬间的状态。
所以CLK=1期间,S、R的状态的多次变化会使触发器输出的状态发生 多次翻转 , 降低了触发器的抗干扰能力 。
目的:适应单端输入信号的需要,并且可以避免两个输入端相与为0的不定情况的出现
D触发器特点:在CLK有效电平期间,输出状态和输入状态相同。
在CMOS电路中,常利用CMOS传输门组成D触发器。
在CLK=0之后,由于反相器G1的电容存储效应,短时间内的G1输入端仍然保持 截止以前瞬间的状态,而且这时反相器 、 和 形成了形态 自锁 的闭合回路,所以Q和A'的状态被保存下来。
注:右上角的“一|”表示延迟
脉冲触发SR触发器也叫做 主从SR触发器 。CLK=1时, (主触发器)的输出状态由S和R端的输入状态决定, (从触发器)保持原来的状态不变;当CLK=0时,即下降沿到来的时候,主触发器保持原来的状态不变,从触发器被置成和 相同的状态。
其中,CLK列第二行的符号表示下降沿。
·在一个时钟周期里,输出端的状态只可能改变一次,而且发生在CLK的下降沿。
·CLK高电平期间,主触发器输出的状态可能随S和R状态的变化。
·仍然存在不定态,仍然要保证SR=0。
主从触发发器的理想状态:前言采样,后沿定局
显然目前这种主从触发器还未能满足这样的状态,因为它不是只是根据时钟信号的上升沿那一瞬间来采样的。
要达到这个目的,必须使CLK=1期间,主触发器的输出状态不发生变化
目的:为了使主从SR触发器在S=R=1时也有确定的状态,则将输出端Q和Q'反馈到输入端
分别对J、K、Q取不同的值的组合做讨论
·CLK变化一次,触发器的状态只可能改变一次。
·在CLK为高电平期间,主触发器只可能翻转一次。若在CLK=1期间输入端状态发生变化,需要找到CLK下降沿到来之前的Q状态来决定Q*。
· 存在一次变化问题 (即不能只根据下降沿到来时刻的状态来判断Q*) 这是这个主从JK触发器最大的缺点
也正是这种缺点,使得电路的抗干扰能力很弱,J、K的值在CLK=1期间不能发生变化。也因此违反了采用主从结构的初衷。所以在实际情况下这种触发器是不能使用的。
下图的黄色部分就存在CLK=1期间J、K的变化导致Q的状态也发生了一次翻转的问题。
目的 :提高触发器的可靠性, 增强抗干扰能力,希望触发器的 次态仅取决于 CLK信号下降沿(或上升沿) 到达时刻 输入信号的状态。而在此之前和之后输入状态的变化对触发器的次态没有影响。
把5.3.2中的主从SR触发器中的SR触发器换成D锁存器,即可构成一个边沿触发器。
在实际中,常用CMOS电路来组成边沿触发器
工作原理:
当CLK=0时, 导通, 断开,所以 =D 断开, 导通,Q保持原来的状态,反馈电路接通,自锁。
当CLK=1时, 断开, 导通,主电路保持原来的状态; 导通, 断开,Q*=D,反馈电路不通。
所以这是个上升沿触发的D触发器。
工作原理:
, ,Q=1
, ,Q=0
工作原理:
当CLK=0时,G3和G4被封锁,输出高电平,触发器保持原态,Q*=Q;G6的输出未D',G5的输出为D。
当CLK由0变成1,即脉冲的上升沿到来的时候,G3和G4门开启,把原来G5和G6门的输出传到G1和G2门处,Q=D。
当CLK=1时,G3和G4开启,但输出互为取反,即必有一个为低电平。若G3,则G3输出为低电平,则G4、G5门被封锁,D数据封锁,通过①线维持Q=1,通过③线阻止Q=0;
当G4输出为0,则G6门封锁,D数据被封锁,使得Q=0,同时②线阻止Q=1,保持Q=0
所以①线为置1线;②为置0维持线和置1阻塞线;③为置0阻塞线。
半导体存储器(semi-conductor memory)是一种以半导体电路作为存储媒体的存储器。按其制造工艺可分为:双极晶体管存储器和MOS晶体管存储器。按其存储原理可分为:静态和动态两种。其优点是:体积小、存储速度快、存储密度高、与逻辑电路接口容易。主要用作高速缓冲存储器、主存储器、只读存储器、堆栈存储器等。半导体存储器的两个技术指标是:存储容量和存取时间。半导体是通过保持电平存储数据的。1 电路中用高电平表示1,低电平表示0;2 同样的在存储介质中,写入电平值,下次读出判断是1/0;3 存储介质的存储利用的是浮栅和衬底间电容效应:电容充电,读出的值就是高电平。电容放电后,读出的就是低电平半导体存储器分为随机读写存储器和只读存储器。
半导体存储器的分类从制造工艺的角度可把半导体存储器分为双极型、CMOS型、HMOS型等;从应用角度上可将其分为两大类:随机读写存储器(RAM),又称随机存取存储器;只读存储器(ROM)。
1、只读存储器(ROM)
只读存储器在使用过程中,只能读出存储的信息而不能用通常的方法将信息写入的存储器,其中又可以分为以下几种。
掩膜ROM,利用掩膜工艺制造,一旦做好,不能更改,因此只适合于存储成熟的固定程序和数据。工厂大量生产时,成本很低。
可编程ROM,简称PROM,由厂商生产出的空白存储器,根据用户需要,利用特殊方法写入程序和数据,但是只能写一次,写入后信息固定的,不能更改。
光擦除PROM,简称EPROM,这种存储器编写后,如果需要擦除可用紫外线灯制造的擦除器照射20分钟左右,使存储器复原用户可再编程。
电擦除PROM,简称EEPROM,顾名思义可以通过电来进行擦除,这种存储器的特点是能以字节为单位擦除和改写,而且不需要把芯片拔下插入编程器编程,在用户系统即可进行。
Flash Memory,简称闪存。它是非易失性存储器,在电源关闭后仍能保持片内信息,与EEPROM相比,闪存存储器具有成本低密度大的优点。
2、随机读写存储器(RAM)
分为两类:双极型和MOS型两种。双极型RAM,其特点是存取速度快,采用晶体管触发器作为基本存储电路,管子较多,功耗大,成本高,主要用于高速缓存存储器(Cache)MOS RAM,其特点是功耗低,密度大,故大多采用这种存储器。
SRAM:存储原理是用双稳态触发器来做存储电路,状态稳定,只要不掉电,信息就不会丢失,优点是不用刷新,缺点是集成度低。DRAM:存储原理是用电容器来做存储电路,优点是电路简单,集成度高,缺点是由于电容会漏电需要不停地刷新。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)