为什么说1nm是半导体的极限?

为什么说1nm是半导体的极限?,第1张

1nm芯片不是极限。

1nm就是摩尔极限,也就是说,硅基芯片的极限精度理论上只能达到1nm,但由于自然环境的限制,其实际精度永远不可能达到1nm。

制程越小,功耗越小,在实现相同功能的情况下,发热小,电池可使用的时间更长。这就是芯片制程越来越小的主要原因。

台积电已经研发出了3nm芯片制造,本以为自己已经独占鳌头,却让人没有想到的是,近日英特尔突然宣布它们已经突破了芯片的摩尔极限,并且已经研发出三套方案,1nm不再是芯片精度的尽头。

发展:

芯片上有无数个晶体管,他们是芯片的核心,也就说,目前的技术是要把晶体管做的越来越小,这样,芯片上能容纳的晶体管就很多,芯片的性能就随之增加。

而目前最小的是1 nm栅极长度的二硫化钼晶体管。而且,并不是到1nm才会发生击穿效应,而是进入7nm节点后,这个现象就越来越明显了,电子从一个晶体管跑向另一个晶体管而不受控制,晶体管就丧失了原来的作用。

硅和二硫化钼(MoS2)都有晶体结构,但是,二硫化钼对于控制电子的能力要强于硅,众所周知,晶体管由源极,漏极和栅极,栅极负责电子的流向,它是起开关作用,在1nm的时候,栅极已经很难发挥其作用了,而通过二硫化钼,则会解决这个问题,而且,二硫化钼的介电常数非常低,可以将栅极压缩到1nm完全没有问题。

1nm是人类半导体发展的重要节点,可以说,能不能突破1nm的魔咒,关乎计算机的发展,虽然二硫化钼的应用价值非常大,但是,目前还在早期阶段,而且,如何批量生产1nm的晶体管还没有解决,但是,这并不妨碍二硫化钼在未来集成电路的前景。

芯片工艺发展到1nm以后怎么办?这的确是一个问题,因为单原子硅的直径就大于0.1nm了,1nm也就10个硅原子不到的样子,这个时候量子隧穿效应将使得“电子失控”,出现芯片失效的问题,而且实际上不需要到1nm就会出现量子隧穿效应。对于这个问题,目前的说法是更换材料,不再使用硅材料,当然这个其实也可以说是治标不治本,因为再好的材料,最终也有一个极限,所以从传统的半导体工艺视角来看,摩尔定律的确是岌岌可危了。

摩尔定律

那么什么是摩尔定律?摩尔定律是由英特尔创始人之一的戈登·摩尔提出来的,其内容为:集成电路上可容纳的晶体管数目,约每隔两年便会增加一倍。但是我们要知道摩尔定律不是物理规律和自然规律,该定律只是对现象的观测或对未来的推测,不是说一直都会成立。从逻辑上来看,物质无法无限细分下去,所以到了一定程度后摩尔定律会失效,所以大家担心摩尔定论失效是很正常的。

而最近几年随着工艺的不断发展,最新的工艺已经到5nm了,3nm也已经在宣传中了,大家对摩尔定律的失效是越来越担心了,不过从工艺跌倒的速度来看,到2030年之前应该还可以继续玩下去,等到了1nm的时候,就真的需要想点办法了,换材料的想法和相关实验早就在进行了,但是目前还没有真正的达到预期中的水平,不过这也不是第一次摩尔定律恐慌了。

前景

那么2030年之后怎么办?或者说就算换材料成功了,也只能再延续一段时间,总有一天会遇到那堵墙的,这条肯定会有尽头。不过我们不要忘记了摩尔定律的本意,虽然当初说的是晶体管数量增加,但是其本意还是芯片性能的提升,而后来英特尔首席执行官大卫·豪斯根据摩尔定律提出,预计每18个月会将芯片的性能提高一倍,如果从这个角度来看,那摩尔定律显然还会具有很长的生命力。

因为性能的提升不是只有半导体工艺提升这一条路,目前来说未来还可以通过更先进的封装来进行性能提升,以及架构上的优化,或者说其他计算方式带来的革命,譬如量子计算等技术。总之个人对计算性能的发展前景还是很看好的,只要有技术和人才的投入,计算机性能的提升将不会停止其步伐,至于半导体工艺面临摩尔定律失效的问题,并不会对计算机性能提升带来致命的影响。

半导体能带理论 分析半导体能带理论,必须从能级,能带,禁带,价带,导带开始。因此分析如下: 能级(Enegy Level):在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。每个壳层上的电子具有分立的能量值,也就是电子按能级分布。为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。 价带(Valence Band):原子中最外层的电子称为价电子,与价电带。 导带(Conduction Band):价带以上能量最低的允许带称为导带。 导带的底能级表示为Ec,价带的顶能级表示为Ev,Ec与Ev之间的能量间隔称为禁带Eg。 半导体的导电作用是通过带电粒子的运动(形成电流)来实现的,这种电流的载体称为载流子。半导体中的载流子是带负电的电子和带正电的空穴。对于不同的材料,禁带宽度不同,导带中电子的数目也不同,从而有不同的导电性。例如,绝缘材料SiO2的Eg约为5.2eV,导带中电子极少,所以导电性不好,电阻率大于1012Ω·cm。半导体Si的Eg约为1.1eV,导带中有一定数目的电子,从而有一定的导电性,电阻率为10-3—1012Ω·cm。金属的导带与价带有一定程度的重合,Eg=0,价电子可以在金属中自由运动,所以导电性好,电阻率为10-6—10-3Ω·cm。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9212975.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存